Zeolite-supported silver as antimicrobial agents

Prabir Dutta a,⇑, Bo Wang a,b

⇑Corresponding author.
E-mail address: dutta.1@osu.edu (P. Dutta).

Abstract

Use of silver for medical and water purification dates back to thousands of years. During 18th to early 20th century, silver was used for wound management. With the advent of organic antimicrobials, the use of silver faded. Recently, the interest in silver as broad-spectrum antimicrobial has emerged because of the increase in antibiotic resistance. Silver also exhibits inhibitory effects towards fungi and viruses. Currently, silver's antimicrobial effect is exploited in a very diverse set of applications ranging from simple consumer goods to complex medical devices. How and in what form silver is introduced in these applications varies widely. The activity as well as release of silver from these products is environment-dependent and not reported in literature, driven possibly by proprietary needs. Zeolites are a novel platform for storage and release of silver. Since the aluminosilicate framework of the zeolite is negatively charged, silver ions can be readily incorporated by ion-exchange. Nanoparticles of silver anchored on zeolite can also be prepared by simple reduction. Commercial sources of silver ion-exchanged zeolite are available. There have been several recent reviews of antimicrobial properties of silver, and a few of these discuss zeolites, but there has never been a comprehensive review of silver zeolites. This review article fills that void, and covers the research in this subject area over the past two decades. Research in silver zeolites cover use of many different zeolite frameworks, and the applications are driven by incorporating silver zeolite into polymers, textiles, metal coatings. Research on dental/medical materials as well as environmental/consumer products are also prevalent. All these topics are covered in the review. In addition, an exhaustive table with chronological detail of silver/zeolites for quick reference is also provided. A critical assessment of the literature and future possibilities with silver/zeolite conclude this review article.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

Silver, in its metallic form, as salts and more recently as nanoparticles is used in diverse set of applications, ranging from consumer goods to medical devices. Health related use of silver dates back to antiquity, with reports of silver use for water purification dating back to 1000 BCE. Silver for wound management was practiced in the 18th century, and the US FDA allowed its use for wound management in the 1920s [1,2].

In recent times, the increasing resistance to antibiotics has renewed interest in silver as a broad-spectrum antimicrobial with low human toxicity [3,4]. In addition, Silver also exhibits inhibitory effects towards growth of fungi and viruses. The forms of silver used include silver salts, silver nanoparticles and metallic silver.

Silver finds use in cosmetics, detergents, dietary supplements, cutting boards, clothes, socks, shoes, cell phones, keyboards, children's toys, food containers, dentures, medical devices such as catheters, wound dressing, paints, coatings and water purifiers [5].

The concentrations of silver in drinking water and foods are regulated in many countries. European Food Safety Agency has allowed a legal limit of 50 ppb of release Ag⁺ ions into food, whereas, FDA has approved silver zeolite in food contact surfaces at levels of <5% [6,7].

Considering the diversity of applications, the methodology of introduction of silver into these products varies widely, and is application-specific. Supports for silver can be fibers, textiles, metals, polymers, and the processing conditions depends on both the support and the type of silver (salts, metal, nanoparticle) being incorporated. Mechanical properties of silver-support composites are relevant for practical use. The amount of silver and the temporal characteristics of the release of silver vary widely depending on the material and the exposed environment. Unfortunately, these characteristics of release are not known for many products.

From a silver storage and release perspective, zeolites provide a unique platform. Zeolites with aluminosilicate framework function as ion-exchange agents and varying amounts of Ag⁺ can be stored in the framework [8]. The release characteristics depend on the zeolite, as well as on the ionic strength of the surrounding medium [9]. These features of controlled storage and release has motivated many studies of Ag⁺-containing zeolites. In addition, silver nanoparticles (AgNP) can also be generated within and on the surface of zeolite, with the zeolite as anchor [10,11]. There are commercial sources of silver ion-exchanged zeolites, e.g. Zeomic, Novaron, AgION, some of these products are available since 1980.

There are several reviews on silver as antimicrobial agents that discuss zeolites, but no comprehensive and critical reviews on silver zeolite literature are available [12–24]. This review attempts to fill that void.

The structure of the review is as follows, the first two sections briefly review the mechanism of how Ag⁺ and AgNP manifest their activity. Next is a discussion of the structural features of zeolite relevant for storage and release of silver. The fourth section, which forms the bulk of the review, summarizes the silver zeolite literature over the past two decades. Organization of this section is done by studies on zeolite powders, followed by zeolites on supports, including membranes, polymers, coatings, dental, and environmental/food applications. The fifth section is a discussion of the regulatory and toxicity issues around silver. This is followed by a critical assessment of the silver zeolite literature, followed by a final section on the future of silver zeolites as antimicrobial agents.

![Fig. 1. Influence of inoculum size of E. coli B on the MBC (○), the CIC (A), and the IIC (□) of the silver ion (adapted from Ref. [3]).](image-url)
A table presents a chronological view of the literature over the past twenty years.

2. Mechanism of silver antimicrobial activity

Several recent review articles discuss the mechanisms of antimicrobial activity of Ag+ and AgNP [12–24]. We, therefore, just highlight the most important modes of action, because of their relevance to the activity of silver zeolite.

2.1. Silver ions

The potency of Ag+ to kill bacteria is demonstrated in Fig. 1. The initial inhibitory concentration (IIC) causes slow growth, complete inhibitory concentration (ICC) causes no growth and minimum bactericidal concentration (MBC) causes irreversible cell death of E. coli B (ATCC 23848 wild type) [3]. For bacteria at an inoculum size of 10^5–10^7 CFU/ml, IIC = 9.45 μM, ICC = 18.90 μM and MBC = 24 μM, demonstrating bactericidal action at micromolar concentrations. In general, Gram-positive bacteria (e.g. S. aureus) is more resistant than Gram-negative bacteria (E. coli), due to the thicker peptidoglycan layer.

What does Ag+ do? Ag+ has a strong propensity to form complexes with ligands containing S, N and O [25]. Thus, biologically relevant species, such as thiols, carboxylic acids, phosphates, amine groups will act as ligands for silver ion. In addition, Ag+ can also compete with the native binding metals in enzymes, particularly the iron-sulfur clusters of bacterial enzymes involved in amino acid synthesis and with DNA bases [4,26]. Thus, there are many points of attack on the cell, within the cell as well as cell surface, and this multi-pronged effect of Ag+ is responsible for antimicrobial activity.

The interference of silver ions at micromolar concentrations with cell function is evident in inhibition of both phosphate uptake and exchange, as well as causing the efflux of succinate, glutamine and proline in E. coli. Inclusion of uncouplers such as N-ethylmaleimide stopped the phosphate efflux, but Ag+ still inhibited exchange of phosphate, suggesting that Ag+ is involved in interaction with the cell at multiple sites [27].

Silver ions also disrupt the proton gradients across membranes necessary for metabolic activity [28–30]. Collapse of the proton gradient increases cell respiration, and becomes uncoupled from ATP-dependent process. SERS suggests that Ag+ is binding to flavoproteins, possibly the cysteine residues of NADH dehydrogenases involved in the proton pumping [29].

Ag+ also inhibits energy-dependent Na+ transport by binding with the Na+-translocating NADH:ubiquinone oxidoreductase, as demonstrated in Bacillus sp. strain FTU and Vibrio alginolyticus [31]. In Vibrio cholerae, where the oxidoreductase is not essential, submicromolar concentration of Ag+ cause cell death by massive proton leakage through the cell membrane. Very low concentrations of Ag+ (1×10^{-6} M) can suppress respiration-supported uphill Na+ transport of certain bacteria, e.g. Bacillus FTU by binding to NADH-quinone reductase. For bacteria in which the Na+ cycle is relevant e.g. Vibrio cholerae, Vibrio parahaemolyticus, Klebsiella pneumoniae, Vibrio parahaemolyticus, Klebsiella pneumoniae, and Salmonella typhimurium, Ag+ is bactericidal at very low concentrations. Ag+ activity is not necessarily arising from binding to a specific target, but nonspecific binding to membrane proteins and/or the phospholipid bilayer.

Another mechanism proposed for antimicrobial activity of silver involves the formation of reactive oxygen species, though the literature is conflicted on this issue [32,33].

Electron microscopy studies of Gram-negative Escherichia coli (E. coli, ATCC 23282) and Gram-positive Staphylococcus aureus (S. aureus, ATCC 35696) upon exposure to 10 μg/ml of AgNO3 provides insight into the morphological changes brought on by Ag+. Upon Ag+ exposure, the DNA appears to be aggregated in the center of the cell. Similar morphological changes were observed in S. aureus. Ag+ containing granules have been found in vacuole and cell walls [34]. In another electron microscopy study, either localized or complete separation of the cell membrane from the cell wall upon treatment with Ag+ was observed [4].

Species that can compete/bind with Ag+ binding also influence its activity. The inhibitory effect of Ag+ on growth of E. coli is moderated in the presence of Cu2+, suggesting that Ag+ and Cu2+ are competing for the same sites, and high concentrations of Cu2+ can have protective effects [26]. Compounds containing thiol groups, such as cysteine and glutathione when added to the growth medium also neutralized the silver activity against growth of Pseudomonas aeruginosa, due to the thiols chelating the Ag+ [25]. In complex broth samples, biological species present in broth such as proteins, amino acids peptides can bind released Ag+. Also, broths contain chloride ions that can precipitate Ag+, but at high Cl− concentrations will form soluble AgCl2− species. Silver however is often precipitated in real world environment streams, e.g. it was effectively absent in waste water in sewage treatment plants, due to the precipitation of highly insoluble and stable Ag2S [35].

2.2. Silver nanoparticles (AgNP)

There is considerable research activity focused on AgNP as antimicrobial agents. The AgNP are typically generated by reduction of dissolved Ag+, typically in an aqueous solution. Diverse group of reducing agents are used. Chemical reducing agents are typically NaBH4, citrate, hydrazine, ascorbate, polyoxometalate, Tollens agent, polysaccharides and polyphenols [36–46]. Proteins, amino acids, vitamins, plant extracts, as well as microorganisms are used to make AgNP [40,47–59]. Irradiation of silver salts by electromagnetic and microwave radiation to produce AgNP is reported [58,60–67]. Other methods include solvated metal atom dispersion, where the nanoparticles form via aggregation of atoms upon solvent removal [68,69].

The nanoparticles made by these diverse methods differ in size, morphology and surface groups. Considering this heterogeneity, it is not surprising that there is wide variation in the antimicrobial activity of AgNP.
How do AgNP exhibit their activity? There is evidence that AgNP oxidatively dissolves to form Ag+, which acts by pathways listed above. Bulk silver metal also acts by dissolution, though at a different rate than nanoparticles. However, there is also indication that direct interaction of AgNP with bacteria can take place and internationalization of AgNP by bacteria has also been noted. We summarize these possible pathways.

For AgNP to dissolve to form Ag+ ions will require an oxidizing agent [70]. The most plausible agent is oxygen from air [71]. Support for this hypothesis comes from several observations [72]. Silver NP prepared under anaerobic conditions does not exhibit antimicrobial activity. However, if such particles are oxidized, the activity is restored [73,74]. Longer storage of AgNP in aerated environments gradually increases their activity. AgNP that are in contact with cell surfaces or internalized can also be oxidized by H2O2 e.g., in mitochondria of eukaryotic cells.

Surface ligands added for particle size control, and other adsorbed species on the AgNP will also influence dissolution [75–78]. Chemisorbed Ag+ ions on the surfaces of AgNP incorporated during synthesis can also be released into the medium [79,80], and it has been calculated that a ~5 nm Ag nanoparticle can adsorb 20 μg of Ag+/mg Ag [20]. Another line of support for Ag+ involvement is that anions that promote precipitation as silver salts, such as Cl–, S2– can produce an insoluble passivation layer on the NP, and decrease antibacterial activity of AgNP [81–84].

Morphological characteristics of the AgNP also have a significant impact on their antimicrobial activity. With similar surface ligands, smaller particles tend to be more active [85]. Correlations between Ag+ released into solution with smaller size and increased antimicrobial activity has been demonstrated [86]. Shape of the AgNP also has an influence, with antimicrobial activity following the order: nanoprisms > nanorods > nanospheres. This effect was explained as due to increasing exposure of [111] facets, which promote dissolution. Increased dissolution can be the result of Ag coordination, altered ligand binding and differences in formation/stability of Ag2O layers [87–90].

AgNP exhibit additional effects, besides just releasing Ag+. They can bind to cell surface and form pits. AgNP with a mean particle size of ~12 nm were prepared by reduction of Ag+ with ascorbic acid in the presence of a high molecular weight sodium salt of naphthalene sulfonate formaldehyde condensate. Electron microscopy (Fig. 2) shows that the AgNP accumulated in the membrane, and small fraction penetrated into the cells [91]. “Pits” are also observed on the cell surfaces. In the liquid medium, the dead cell debris can trap the AgNP and remove them from the medium, and the bacteria can resume growth.

Using EPR spectroscopy, the formation of free radicals when AgNP contacts cell surfaces has been noted. AgNP can be a source of concentrated Ag+ release, once it is within the bacteria [92]. Mechanical abrasion effects can also occur upon contact of AgNP with bacterial surfaces [93].

Surface charge of NP also influence their activity, primarily because bacterial surfaces carry negative charges. Positively charged chitosan supported AgNP exhibited higher antimicrobial activity since the chitosan can bind to negatively charged bacteria, allowing the attached AgNP to promote bacterial death (chitosan itself has antimicrobial properties) [94]. Positively charged polyethyleneimine coated AgNP were found to have lower toxicity [95]. Caution needs to be exercised since the charge of the particle as-prepared can be altered in the media due to ligand replacement or adsorption of proteins to form a corona [96]. For example, negatively charged AgNP have also been found to be strongly associated with the bacterial surface [91].

Another unique feature of NP is that they can diffuse through biofilms, whereas Ag+ binds to the diverse sites, such as thiols, amines and carboxylates, impeding motion. Thus, for ~2 nm...
Types lists 133 structures, all with distinct topologies, and characterized by different pore structures, and crystal morphology [100]. Some zeolites are found in nature, and 40 different frameworks are known [8,9]. Typically, zeolites are synthesized under hydrothermal condition in the laboratory. High porosity zeolites are metastable structures. Of particular relevance to silver zeolites is the ion-exchange process of replacing the cations in the as-synthesized zeolite with Ag⁺. Ion exchange isotherms provide information about the thermodynamic selectivity of particular cations for the framework. Faujasitic zeolites (zeolite X and Y) are studied commonly for silver antimicrobials. Ion-exchange isotherms at low loadings suggest selectivity of Ag > Ti > Cs > Rb > K > Na > Li [8]. The selectivity for the natural zeolite clinoptilolite is quite distinct from zeolite A or X/Y and follows the sequence K > NH₄ > Ag > Pb > Na > Ca > Li [101]. The ion-release characteristics will vary with the framework and the types of ions in the surrounding e.g. in a K⁺ – rich broth, Ag⁺ will be more readily released from clinoptilolite as compared to zeolite A or zeolite X/Y [101].

Silver ions are polarized by the strong electric fields within the framework, and results in strong attraction between Ag⁺ and the zeolite framework. This tight binding of Ag⁺ by the framework also implies that the release of Ag⁺ by the framework will require higher ionic strength solutions. In general, all zeolites show high selectivity for Ag⁺, and with increasing Si/Al ratio for a particular framework, the selectivity towards Ag⁺ tends to be higher [102].

Besides the framework structure and Si/Al ratio of the zeolite determining Ag⁺ uptake and release, there are several other zeolite features that are relevant for antimicrobial activity. Zeolite morphologies can vary from rods to spheres, which will alter the extent of bacteria-zeolite contact [8,9]. Zeolites can also be synthesized with particle sizes varying from nanometers to microns [103]. With the smaller zeolite crystals, there is the potential for uptake of the zeolite particle by the bacteria. Nanozeolites have the potential advantage of faster ion exchange and ion release because of shorter diffusion lengths. This could be relevant for applications that require a quick antimicrobial effect. Release characteristics of the Ag⁺ from the zeolite will be altered with amorphization of the surface and is dependent on sample preparation.

3.1. Siting of cations

The extraframework cations in the zeolite are distributed over specific crystallographic sites. The positions of the cations are best determined by single crystal X-ray crystallography. Below we discuss antimicrobial activity of zeolite frameworks, and the siting of Ag⁺ in all of these structures has not yet been reported. Much work, however, has been done with faujasitic zeolites regarding Ag⁺ siting and we summarize this work. Zeolites X and Y represent the faujasitic structure with typical compositions of Na₈₆Al₈₆Si₁₀₆O₃₈₄·2₆₄H₂O and Na₅₆Al₅₆Si₁₃₆O₃₈₄·2₅₀H₂O, respectively. As synthesized, the framework is filled with water, which can be completely removed at high temperatures. The framework variation between zeolite X and Y is only in the Si/Al ratio. The cations are located at specific crystallographic sites identified as sites I, I’, II and II’, III and III’, as indicated in Fig. 3. Single crystal structure of completely exchanged Ag⁺–zeolite X has been reported in the literature [104,105]. Of the 92 Ag⁺, 16 fill site I, 16 at site I’, 32 fill site II, and 28 occupy four different III’ sites [104,105].

4. Silver-zeolite powder antimicrobial activity

The following is a review of the silver-zeolite literature since 2000. The sections that make up this part includes natural zeolites, low Si/Al zeolites, high Si/Al zeolites, zeolite membranes, zeolite/polymer composites, zeolite/textile composites, zeolite coatings, zeolite in medical/dental and in environmental/consumer applications.

4.1. Natural zeolites

4.1.1. Clinoptilolite

The structure of this framework is shown in Fig. 4.

Top et al. studied Ag⁺, Zn²⁺ and Cu²⁺ exchanged clinoptilolite. Samples were prepared by ion-exchange and antibacterial activities towards P. aeruginosa and E. coli was investigated using the agar disk diffusion method [106]. Ion-exchange isotherms showed

Fig. 5. Ag⁺–Na⁺ exchange isotherm of clinoptilolite at 25 °C (adapted from Ref. [106]).

![Fig. 5. Ag⁺–Na⁺ exchange isotherm of clinoptilolite at 25 °C (adapted from Ref. [106]).](image)

Fig. 6. The structure of chabazite.

![Fig. 6. The structure of chabazite.](image)

Fig. 7. TEM images of the silver-supported chabazite sample (adapted from Ref. [109]).
considerable selectivity of Ag⁺ over Na⁺, and complete replacement of Na⁺ was noted, as shown in Fig. 5. For Zn²⁺ and Cu²⁺, there was slight preference over Na⁺ for clinoptilolite, but only at low concentrations. About 50% exchange of the Na⁺ by the divalent ions was observed. Ag⁺-clinoptilolite showed the best antibacterial activity, but the activity did not scale with the amount of Ag⁺ in the zeolite. Formation of metallic Ag at the higher concentrations of Ag⁺ exchange, as well as loss in porosity was proposed as the reason for lower activity at high Ag⁺ loading in the zeolite.

Akhigbe et al. ion-exchanged clinoptilolite with Ag⁺ (4.34 wt%) and examined the antimicrobial activity towards E. coli [107]. With a zeolite concentration of 2 mg/ml, 10 log₁₀ reduction was noted within 30 min (Ag⁺ release during this period was 0.76 μg/ml, and accounts for 0.9 wt% of Ag in zeolite). Part of this enhanced activity could be due to osmotic shock, since these experiments were done in water. In the presence Pb²⁺, Cd²⁺ and Zn²⁺ in solution, the activity of the Ag⁺-zeolite was enhanced (15 min for 10 log₁₀), since these metal ions increased the Ag⁺ exchange out of the zeolite into solution (e.g. 1.05 μg/ml of Ag⁺ for Pb²⁺ as compared to 0.4 μg/ml without Pb²⁺ in 15 min). The role of ion-exchange kinetics in influencing antimicrobial activity for zeolite with multiple ions was evident from this study.

Guerra et al. prepared AgNP on clinoptilolite surface and tested it against E. coli and Salmonella typhi [108]. Nanoparticles on the zeolite surface were generated by reduction of Ag⁺-exchanged zeolite with H₂ at elevated temperatures. Particle size of the Ag NP ranged from 0.9 to 7.4 nm. With the highest loaded Ag sample (4 wt%), 1.7 mg/ml of AgNP-zeolite produced a 2 log₁₀ decrease for E. coli (~starting with 200 CFU/ml) within an hour. Salmonella required a larger amount of sample (6.7 mg/ml) for complete killing of the bacteria.

4.1.2. Chabazite

The structure of chabazite is shown in Fig. 6.

Flores-Lopez et al. generated AgNP on surface of chabazite by reducing Ag⁺-exchanged zeolite with thermal annealing in air [109]. The loading of Ag was ~19 wt%, and AgNP were evident on the zeolite surface (Fig. 7). Six bacterial strains, S. epidermidis (ATCC 12228), S. aureus (ATCC 25923), Salmonella typhimurium (ATCC 14028), E. coli (ATCC 25922), Shigella flexneri (ATCC 12022) and P. aeruginosa (ATCC 27853) were examined. Using 10⁵ CFU/ml of bacteria, and zeolite loadings of 0.001, 0.1 and 1 wt% (10 μg/ml to 10 mg/ml) in a saline solution, the killing of bacteria was complete in 48 h, expect for S. aureus. At 0.00001 wt% (0.1 μg/ml) zeolite, only S. epidermidis was completely killed, whereas a low number of counts was noted with the other bacteria.

Summary of this section is:

- Natural zeolites can accommodate Ag⁺ and AgNP.
- High loading of Ag⁺ can lead to formation of metallic Ag.
- Ions in the medium influences antimicrobial activity of silver zeolite by influencing ion-exchange kinetics.

4.2. Synthetic zeolites

4.2.1. Low Si/Al zeolites

4.2.1.1. Zeolite A

The structure of zeolite A is shown in Fig. 8. Many studies are reported with this zeolite, possibly because commercial forms of the Ag⁺- exchanged version of this zeolite are available.

Kawahara et al. investigated the antibacterial activity of a commercial sample of Ag⁺-zeolite A (Zeomic, 2.5 wt% silver, Zeomic) with E. coli strain OW6 (Pro⁻) and CS7 (lacY rspL thi) and its catalase-deficient mutant UM1. In 20 μM potassium phosphate or 20 μM HEPES-NaOH buffers, the Ag⁺-zeolite exhibited bactericidal activity [111]. The concentration units in the paper were not consistent (mg/l and mg/ml used interchangeably) so it is unclear what concentrations were actually used. The survival rate decreased non-linearly with time, being slow initially. This aspect is possibly a reflection of the ion-exchange dynamics. This study also noted that under anaerobic conditions, more cells are viable. It was proposed that the presence of oxygen could lead to ROS formation, due to Ag⁺-mediated inhibition of respiratory enzymes. Close proximity of the zeolite and bacteria promoted the antibacterial effect, possibly due to higher concentration of Ag⁺ that are ion-exchanged out of the zeolite around the bacteria. The source of cations (possibly Na⁺, K⁺) that can exchange out the Ag⁺ can come from the buffer or from the bacteria.

Zhang et al. prepared Ag⁺-ion exchanged zeolite A under microwave radiation and found it to be more active [112]. The antimicrobial activity towards E. coli (ATCC 10231), B. subtilis (ATCC 6633) and S. aureus (ATCC 27154) was examined. Towards all three bacteria, the MIC of the microwave prepared sample was 50 μg/ml, and 100 μg/ml for the conventional ion-exchanged Ag⁺-A. The higher activity with the microwave prepared sample is possibly a reflection of the higher level of Ag⁺ loading (factor of 2) in the zeolite.

Krishnani et al. examined the antimicrobial activity of Ag⁺-exchanged zeolite A (39.4 wt% Ag) towards E. coli, Vibrio Harvey, V. cholerae and V. parahaemolyticus [113]. The MIC for E. coli and V. harveyi was 40 μg/ml, whereas for V. cholerae and V. parahaemolyticus, MIC was higher at 50 and 60 μg/ml, respectively (all after 48 h of contact, 10⁶ CFU/ml). V. cholerae and V. parahaemolyticus have thicker cell walls and thus needed higher levels of Ag⁺-zeolite. The presence of ammonia increased the antimicrobial activity of the Ag⁺-zeolite and was attributed to the toxicity of NH₃.

Kaal et al. studied the ion-exchange isotherms of single, binary and ternary mixtures of Ag⁺, Cu⁺⁺ and Zn⁺⁺ with zeolite A (Zeomic) [114]. Ag⁺ exhibits almost 100% of the theoretical exchange, only...
indicating clear preference of zeolite A towards Ag⁺ over Na⁺. Even in the binary and ternary systems, Ag⁺ content of the zeolite was significantly higher than Cu²⁺ and Zn²⁺. Similar trends were also noted with ion-exchange out of the zeolite, with Ag⁺ being held most strongly by the zeolite, e.g. 0.35 mmol/l of Ag⁺ was released from the ternary sample, compared to a maximum of 96.2 mmol/l that could be released. MIC of single, binary and ternary ion-exchanged zeolite A towards S. aureus (ATCC 90874) and Candida tropicalis (ATCC 90874) and P. aeruginosa (ATCC 27853) were determined. The concentration of zeolite was varied from 2 to 1024 ppm with 5 × 10⁵ CFU/ml of bacteria. Ag⁺ containing samples exhibited the highest activity e.g. with Ag⁺-A, MIC of 2, 512 and 128 ppm (µg/g) towards C. tropicalis, MRSA and P. aeruginosa was observed. Co-exchange with Zn²⁺ and Cu²⁺ decreased the amount of Ag⁺, and in some cases increased MIC.

Zhou et al. studied the antimicrobial property of Ag⁺-ion exchanged zeolite A (36.6 wt% Ag) towards E. coli (ATCC 8739) and S. aureus (ATCC 6538) [115]. MIC of 1 µg/ml and 3.5 µg/ml towards E. coli and S. aureus was found. These are some of the lowest numbers for MIC that are reported, but since the description of the biological experiments were poorly presented (lack of CFU, times of exposure), it is difficult to compare this study with others.

Jiaroj et al. compared the antimicrobial properties of Ag⁺-ion exchanged zeolite A and AgNP-zeolite A (prepared by NaBH₄ reduction, ~1 µm zeolite particle, weight loadings of Ag not reported) [116]. There was surface roughening of the zeolite upon Ag⁺ incorporation. From the electron microscopy data, the size of the AgNP appears <10 nm (present in both the ion-exchanged and metallic samples), Gram-negative E. coli (ATCC 25922) and Gram-positive S. aureus (ATCC 6538) at ~10⁻⁷ CFU/ml was used to examine the antibacterial activity towards the zeolite (25–200 µg/ml) for exposures of 0–3 h. General observations were that higher concentrations and longer exposure times to silver zeolite were more effective at killing cells. Killing of S. aureus took higher concentrations and longer times than E. coli. Towards E. coli, the AgNP-zeolite was less effective than Ag⁺-zeolite, though this effect disappeared with longer incubation times. Thus, at 3 h, ≥50 µg zeolite/ml caused ~100% E. coli mortality at 3 h for both Ag⁺ and AgNP zeolite.

Demirci et al. studied Ag⁺, Zn²⁺ and Cu²⁺-exchanged zeolite A and X and their antimicrobial activity towards bacteria (S. aureus, E. coli, P. aeruginosa, B. cereus, 10⁶ CFU/ml), yeast (C. albicans, C. glabrata 10⁶ CFU/ml) and fungi (A. Niger, P. vinaceum 10⁵ spore/ml) [117]. Incubation times were 24 h, 48 h and 72 h for bacteria, yeast and fungi, respectively. The best antibacterial results were obtained with Ag⁺-exchanged samples. For a phase-pure Ag⁺-X (Ag-z2 from the paper), the MIC value for P. aeruginosa was 32 µg/ml, whereas for the other 3 bacteria, MIC was 64 µg/ml. With the optimum Ag⁺-A sample (Ag-z3) the MIC towards B. cereus was 16 µg/ml, whereas for the other three bacteria, MIC was 32 µg/ml. This sample (Ag-z3) also exhibited the highest rate of release of Ag⁺ into the media (39–70 ppm Ag⁺ over 0.5–24 h with 2.048 mg zeolite/ml). For the Cu²⁺ and Zn²⁺ exchanged zeolites, the MIC value for the bacteria ranged from 256 to 2048 µg/ml. Towards the yeast and fungi, MIC for the Ag⁺- zeolites varied from 128–1024 µg/ml.

Summary of this section is:

- Closer contact of silver zeolite with microorganism promotes antibacterial activity.
- Bacteria with thicker walls required more silver zeolites.
- Silver zeolites exhibit antimicrobial activity under anaerobic conditions, but at a considerable lower rate.
- For multiply ion-exchanged silver zeolite (e.g. with Zn²⁺ and Cu²⁺), the presence of a co-cation influences the ion-exchange kinetics of the Ag⁺ release.

4.2.1.2. Faujasitic zeolites. Zeolites X and Y are representative of faujasitic zeolites, and their structure is shown in Fig. 3. Zeolite X and Y have the same framework, and are only distinguished by their Si/Al ratios, with zeolite X being defined as Si/Al <1.5 and zeolite Y with Si/Al >1.5.

Kwayke-Awuah et al. examined the antimicrobial activity of Ag⁺-zeolite X (2–9 µm zeolite, 5.8 wt% Ag) towards E. coli (K12 W-T), P. aeruginosa (NCIMB 8295) and S. aureus (NCIMB6571) [118]. With all three bacteria (~5 × 10⁵ CFU/ml), exposure to zeolite loadings of 150–1000 µg/ml led to complete cell death after 2 h. With 150 µg/ml zeolite, no viable cells were detected in E. coli after 45 min and the same observation was made with S. aureus and P. aeruginosa after 60 min of exposure. The amount of Ag⁺ released from the zeolite was higher in presence of microorganisms than in broth alone, suggesting uptake of Ag⁺ by the bacteria. Ag⁺ concentrations were <10 ppm for 45 min exposure, indicating that the majority of Ag⁺ (~97%) is retained in the zeolite. Antimicrobial activity with the same sample was repeatable (experiments done 3 times), since most of the Ag⁺ is retained in the zeolite.

Inoue et al. proposed that light irradiation was responsible for creating bactericidal active oxygen species (superoxide) responsible for killing E. coli (NIH C12), since the Ag⁺-zeolite Y did not exhibit antibacterial activity in the dark [119]. A control sample of Na⁺-zeolite Y under light irradiation did not show activity. It is unclear how the intrazeolitic superoxide is formed and transported out of the zeolite within 5 min to kill ~10⁸ bacteria.

Shameli et al. studied AgNP (2–3 nm) on micron-sized zeolite Y crystals prepared by reduction of Ag⁺-Y with NaBH₄ [120]. Antibacterial activity towards E. coli (ATCC 25922), Shigella dysenteriae (ATCC 9753), (both Gram-negative), and S. aureus (ATCC 25923), S. aureus (MRSA, ATCC 700689) (both Gram-positive) was examined by the disk diffusion method. All AgNP-Y exhibited antimicrobial activity; zeolites with smaller AgNP particles exhibiting higher activity.

Ferreira et al. studied Ag⁺-ion exchanged zeolite X (9.8 wt% Ag) and Ag⁺-ion exchanged zeolite Y (9.7 wt% Ag), both containing micron sized zeolite particles [121]. The MIC values for the bacteria (E. coli, B. subtilis) were 300 µg/ml for AgX and 200 µg/ml for AgY (24 h exposure) and for the yeast S. cerevisiae and C. albicans, MIC were 1000 µg/ml for both Ag⁺-zeolite X and Y (42 h exposure). The lower MIC value for the bacteria in the case of AgX as compared to AgY was explained as arising from the metallic Ag (presence concluded by Auger spectroscopy) in AgX. Fig. 9 compares the antimicrobial efficiency between the two zeolites towards E. coli as a function of zeolite content. With the yeast samples, the more
complex cell structure of the yeast necessitated the need for higher levels of Ag⁺ zeolite to inhibit growth.

The effect of Ag⁺-exchanged zeolite X on antibiotic activity of rifampicin, nalidixic acid, benzylpenicillin and chloramphenicol towards E. coli (NIHJ JC2) (10⁶ CFU/ml) was reported by Inoue et al. [122]. The exposure times were kept to 3 min, since at these short times, it was reasoned that the Ag⁺-zeolite would have no effect. Only in the case of rifampicin, Ag-Y had a synergistic effect. It was proposed that that effect of the silver zeolite arose from its ability to create reactive oxygen species.

Ferreira et al. examined bimetallic samples of zeolite Y, containing two of three ions Ag⁺, Cu²⁺ and Zn²⁺ (six samples starting with the monometallic form) for antimicrobial activity towards E. coli (CECT 423) (24 h exposure) [123]. Towards E. coli, the ZnAg-Y (Zn²⁺ exchanged first followed by Ag⁺) was the most active, with a MIC of 500 µg/ml, while AgZnY had a MIC of 1000 µg/ml. Bimetallic samples were more active than Ag-Y or Zn-Y (both with MIC > 2000 µg/ml). The loading of Ag and Zn in AgZnY and ZnAgY were 1.04 wt% (Ag), 4.61 wt% (Zn) and 3.31 wt% (Zn), 1.85 wt% (Ag), respectively. The ion-exchange out of the zeolite is dependent in which order the metallic ion was introduced. For the yeast sample, the best results were also obtained with AgZn-Y and ZnAg-Y, both exhibiting MIC values of 2000 µg/ml, expectedly higher for the more complex eukaryotic yeast cell.

Singh et al. noted that sputtered Ag metal on zeolite crystals can react with H₂O₂ producing O₂ that results in movement of these crystals within a fluid medium [124]. These Ag metal-zeolites can be ion-exchanged with Ag⁺ and was found to exhibit antibacterial properties towards E. coli. The self propelled motion promoting enhanced contact with the bacteria was of interest in this study.

Ferreira et al. continued their studies with the bimetallic ZnAgY, and tested for activity against E. coli (CECT423), B. subtilis (4886), yeast C. albicans (JGC 3456T) and S. cerevisiae (BY 4741) [125]. Samples with different Ag loadings were examined. The optimal sample ZnAgY had 3.03 wt% Zn and 6.04 wt% Ag and exhibited MIC of 100, 100, 300, 300 µg/ml towards E. coli, B. subtilis, C. albicans and S. cerevisiae, respectively. For AgY with 9.70 wt% Ag loading, comparable MIC values were higher, 200 µg/ml for bacteria and 1000 µg/ml for yeast, indicating enhancement of activity with both ions present. The Zn²⁺ and Ag⁺ distribution in the zeolite was non-uniform, with Ag⁺ proposed to be in the supercage sites. A synergistic effect of Ag⁺ and Zn²⁺ was clearly present. The zeolite/antimicrobial assays were reproducible even after two years of zeolite sample storage.

Hanim et al. carried out surface derivatization of Ag⁺-zeolite Y with 3-aminopropyltriethoxysilane [126]. The surface derivatization leads to –NH₂ groups, which get protonated in the media, leading to positively charged zeolite particles (confirmed by zeta potential measurements). Several concentrations of AgNO₃ were chosen for ion-exchange, and the extent of surface functionalization was also altered. Surface derivatization tended to improve the MIC compared to the underivatized sample e.g. with E. coli (ATCC 11229). MIC of 100 and 50 µg/ml was noted for underivatized and derivatized sample, respectively. Enhanced interaction of positively charged zeolite particles with negatively charged bacteria was proposed to explain the improved MIC for functionalized samples. Higher loadings of Ag⁺ did not improve MIC significantly, and zeolite structural changes were noted at high loadings of Ag⁺. Similar observations were made with S. aureus (ATCC 6538).
shows electron micrographs of zeolite-exposed *E. coli* with holes in the bacterial cell surface. With *S. aureus*, the morphology was unchanged, indicating difference in the killing mechanism between these two bacteria.

Chen et al. compared the MIC and MBC for Ag+ exchanged zeolite X of varying morphology [127]. Submicron aggregates of 100–700 nm containing ~24 nm primary particles was compared with ~2 μm particles. The nanostructured zeolite had a hierarchical structure with both micro- and mesopores. The amount of Ag+ loading in both morphologies was comparable, about 20–22 wt%. However, the Ag+ release characteristics in a flow-through cell (with Na+ eluent) indicated faster and higher amount release of Ag+ from the nanozelite. The micron and nano zeolites exhibited MIC and MBC values towards *S. aureus* (MRSA) of 16 and 32 μg/ml, respectively (24 h test). The faster Ag+ release from the nanozelite was evident in short-term experiments (10 min), where 400 μg/ml of the zeolite killed MRSA (10⁸ CFU/ml) in 3 min versus 7 min for comparable levels of the micron zeolite. The Ag+ nanozelite was ineffective at inhibiting MRSA biofilm, rather appeared to promote film formation. The cytotoxicity against human skin epithelial cells (WM-115) required >128 μg/ml of Ag+-hierarchical zeolite, whereas for human skin fibroblasts (Detroit 551) and monocytes (U-937) concentrations of 64 μg/ml was required for significant reduction in viability. These cytotoxic concentrations are significantly higher than the MIC/MBC concentrations.

Youseff et al. also compared zeolites analcime, faujasite and zeolite A in both micron and nanosizes (~200 nm) [128]. Upon Ag+ exchange, the nanozelites were degraded, but the micron sized zeolites were stable. Very high levels of Ag+ were found in faujasite (48 wt%) and analcime (50 wt%) for the micron sized zeolites, with zeolite A containing 24.6 wt%. The agar plate diffusion method showed antimicrobial activity in the following order analcime > faujasite > zeolite A towards *S. aureus*, *P. aeruginosa*, *C. albicans* and *A. niger*. No difference in antimicrobial activity was noted between the micron and nano-sized zeolites.

Summary of observations of faujasitic zeolites are

- Smaller zeolite crystal exhibit faster Ag+ release.
- Nanosized zeolite crystals may be damaged with high Ag+ loadings.
- Ion-exchange of Ag+ from a bimetallic Ag+, Zn2+ zeolite depends on which of the two ions is introduced first into the zeolite.
- Presence of microorganism alters available Ag+ in broth media.
- As in case of clinoptilolite, high Ag+ loadings can lead to Ag+ formation and slow the antimicrobial activity.
- Smaller the size of AgNP on the zeolite, higher the activity.
- Yeast requires more silver zeolite than bacteria for cell death.
- Surface modification of the silver zeolite to generate a positive charge improves antimicrobial activity.
- Gram positive and Gram negative bacteria exhibit different morphological changes upon treatment with silver zeolites.
- Silver zeolites exhibit activity even after two years of storage.

Fig. 13. The structure of ETS-10.

4.2.1.3. EMT. The structure of EMT is shown in Fig. 11.

Dong et al. ion-exchanged nanosized (10–20 nm) crystals of EMT with Ag+ (2–6 h) to form Ag+-EMT [129]. The Ag content increased to 14 wt% with 6 h of ion-exchange. These samples were subjected to microwave radiation in the presence of trimethylamine to form AgNP-EMT. The size of the AgNP varied from 0.6 nm to 2–5 nm, the latter with the higher-loading Ag+. The NP were on the surface of the zeolite. Spot inoculation of *E. coli* (ATCC 8739, 10⁶ CFU/ml) onto thioglycollate agar plates in the presence of Ag+EMT and Ag-EMT showed that the cells were instantly killed. MIC values were not reported, since the goal was to qualitatively compare the killing efficiency of Ag+ and AgNP EMT samples. The NP tended to perform better than the ion-exchange samples, and was attributed to the presence of the NP in a mesoporous zeolite environment, thereby promoting Ag mobility.

In summary.

- Direct composition of the antimicrobial activity of AgNP and Ag+-zeolite with comparable silver loadings show that the AgNP-zeolite performed better.

4.2.2. High Si/Al zeolites

4.2.2.1. Mordenite. The structure of mordenite is shown in Fig. 12.

Jaime-Acuna et al. synthesized mordenite with entrapped AgNP in a one-pot experiment using silica, alumina sources and AgNO₃ [130]. The mordenite crystal size was 40 μm length with 70 nm needle shaped crystals, and AgNP of average size of 5–6 nm resident on the surface of the zeolite. The Ag loading was found to be 1.5 at%. With 10⁶ CFU/ml *E. coli* (MC4100), MIC and MBC of the AgNP-mordenite was 2 and 3 μg/ml, respectively (overnight incubation). Silver release from the zeolite was ~15 ppm. Exposure to the solution alone was slower in killing cells, as compared to direct contact with the zeolite.

Fig. 14. The structure of ZSM-5.

4.2.2.2. ETS. ETS-10, unlike the aluminosilicate zeolites discussed in this paper is a titanosilicate, and its structure is shown in Fig. 13.

Lv et al. examined the antimicrobial activity of Ag+-exchanged ETS-10 and AgNP ETS-10 (reduction by NaBH₄) towards *E. coli* [131]. The Ag+ loading varied from 6.4 to 17.8 wt% for Ag+-ETS-10 and the AgNP loading in AgNP ETS-10 was 5.3–16.2 wt% of Ag. The size of the AgNP was in the range of 0–5 nm. With Ag+-ETS-10 (0.5 mg/ml), the viable cell number decreased by a factor of
Lauleza et al. ion-exchanged Ag⁺ into H⁺-ZSM-5 (Si/Al = 15, particle size of zeolite 1–2 μm) using a 1 wt% AgNO₃ solution [133]. The low Al content of the zeolite resulted in a low Ag⁺ loading of ~0.2 wt%. These Ag⁺-ZSM-5 samples showed a 4 log₁₀ unit decrease in 24 h for S. aureus strain 9213 (10⁶ CFU/ml). Within the first 4–6 h of exposure, 25,000 ppm Ag⁺ was released to the culture medium from 300 mg/ml of zeolite with 0.23 wt% Ag. At longer times (24 h), though more Ag⁺ is released, the biofilm formed (observed by SEM) around the zeolite hindered the migration of Ag⁺, diminishing antimicrobial activity.

In another study, Lauleza et al. loaded peracetic acid (PAA, 8–9 wt%) into Ag⁺-ZSM5 and AgNP-ZSM-5 (prepared by NaBH₄ reduction, Ag loading 0.2 wt%) and their antibacterial activity towards S. aureus (9213, 10⁶ CFU/ml) was examined [134]. The combination of peracetic acid, itself a strong disinfectant with Ag exhibited stronger bactericidal (9 log₁₀ decrease) effect than the acid (2 log₁₀ decrease) or Ag-zeolite (6 log₁₀ decrease) (using 30 mg/ml of zeolite). It was proposed that the presence of PAA disrupted the biofilm, allowing for Ag⁺ activity. The AgNP-ZSM5 did not exhibit any activity, but with PAA exhibited a 7 log₁₀ reduction. In the case of AgNP-ZSM5, PAA was proposed to enhance the dissolution of NP.

Yee et al. reduced Ag⁺-ZSM-5 (1–5 μm zeolite, Ag content 0.8–10 wt%) with citrate to produce AgNP (~1.48 nm), visible by TEM both outside and inside the zeolite [135]. The adherent bacterial biomass (using H. pacifica, a common marine fouling organism) was reduced by 81% with the 10 wt% Ag⁺ sample (compared to zeolite alone). The biofilm inhibition was correlated with the Ag loading of the zeolite. The Ag zeolite also inhibited the growth of other marine microalgae D. tertiolecta and Isochrysis sp. The amount of silver in the zeolite was very high considering that ZSM-5 is a siliceous zeolite.

Sanchez et al. ion-exchanged Ag⁺ into high Si/Al ZSM-5, and examined their antimicrobial activity towards E. coli and P. aeruginosa and antifungal activity towards C. albicans [136]. Both inhibition halo test and bacterial growth curves showed that the silver-ZSM-5 exhibited antibacterial and antifungal activity. Growth curves for the bacteria exhibited a 50% decrease in growth as measured by decrease in the optical density (400 min). The antifungal property was not as pronounced, with a decrease of 15% in growth after 400 min.

4.2.2.4. Zeolite beta. The structure of zeolite beta is shown in Fig. 15.

Saint-Cricq et al. examined three zeolites, beta (3D pore structure), MTW (1D pores) and zeolite A (3D pores, commercial Zeomic) [137]. For zeolite beta and MTW, zeolite samples were prepared with and without structure-directing agent (SDA). Ag⁺ was incorporated by ion-exchange. The samples with the structure-directing agent needed to be calcined and incorporated lower levels of Ag⁺ upon ion-exchange. There were several unexpected observations. First, the MTW prepared with structure-directing agent (0.5 wt% Ag) exhibited no antibacterial activity, whereas MTW prepared without structure-directing agent (1.3 wt% Ag) completely killed all bacteria (10⁶ CFU/ml) within 8 h (2 mg/ml of zeolite used). Zeolite beta prepared with structure directing agent (0.5 wt% Ag) killed all bacteria within 8 h, whereas zeolite beta without the structure directing agent (0.7 wt% Ag) was far more active, with complete bacterial death for 10⁶ CFU/ml within one hour. Zeomic with 2 wt% Ag also killed all bacteria (10⁶ CFU/ml) within an hour. Fig. 16 compares the antimicrobial activity of beta with Zeomic. The poor antibacterial activity of MTW was explained due to the presence of extraframework Al blocking the one-dimensional pore, and stopping the release of Ag⁺. This hypothesis was not verified by Ag⁺ release into the media. However, it was shown that Zeomic releases Ag⁺ faster than zeolite.
beta, and was considered the reason for the enhanced activity of Zeomic at the 30 min mark (Fig. 16). What is puzzling is the significant difference between the two forms of zeolites beta with comparable silver loadings (0.5 and 0.7 wt%). The comparison of the release of Ag⁺ from the two samples would have been instructive. One possibility could be differences in particle size of the zeolite prepared by the two methods, which can alter the cell-zeolite interaction. The morphological data was not provided. The nonlinearity of activity over time for Zeomic and beta (also observed previously with Zeomic) could be due to the kinetics of ion-exchange.

Tosheva et al. examined both small (18–200 nm) and large (1.2–2.2 μm) crystals of zeolite X, as well as zeolite beta, small (200–300 nm) and large (400–500 nm) [138]. The Ag⁺ loading by ion-exchange in zeolite X was ~10.7 wt%, and in beta ~2.3 wt%. The larger crystals tended to release more Ag⁺ into solution e.g. at 50 μg/ml zeolite X, 0.02 and 0.11 ppm Ag were found after a 7 min exposure for small and large crystals, respectively. Zeolite beta at 0.05 mg/ml released 1.10 ppm (small) and 2.52 ppm (large) Ag⁺ within 7 min. Antimicrobial tests were carried out with E. coli (ATCC 8734) and a yeast C. albicans (NCYC 1363). With a sample of 500 μg/ml, small zeolite X showed complete killing (with 5 × 10⁶ CFU/ml) within 5 min, whereas for the larger crystals it took 3 min. With comparable amounts of zeolite beta, the trends were similar, but complete killing took place in a minute. This study also looked at cytotoxicity towards peripheral blood mononuclear cells. Apoptosis measured with flow cytometry, indicated that silver zeolites with a dosage of 50 μg/ml or below did not cause toxicity.

For high Si/Al zeolites, the following observations can be made.

- Direct contact of microorganism with silver zeolite promotes killing efficiency as compared to the broth in which the zeolite is suspended.
- AgNP-zeolite released Ag⁺ slower than Ag⁺ of comparable Ag loading, but the AgNP-zeolite was more active.
- Highly siliceous zeolites store lower amounts of silver.
- Formation of biofilm around the zeolite can decrease antimicrobial activity due to decreased release of silver.
- Antibacterial activity of silver exceeds antifungal activity.
- For the same framework, use of a structure-directing agent (SDA) in the synthesis step and its subsequent removal decreases the antimicrobial activity, as compared to the zeolite that was synthesized without the SDA (comparable Ag⁺ content).
- More Ag⁺ is released from larger crystals (minutes time frame) as compared to smaller zeolite crystals with comparable Ag⁺ content.
- Siliceous zeolites released Ag⁺ faster than more aluminous zeolites.

4.2.3. Zeolite membranes

Zeolite membranes are an effective support for separations and purification, and two studies have been reported on AgNP generated on zeolite membranes.

Sabbani et al. generated Ag-NP (~50 nm) on patterned zeolite Y membranes (micron size features formed by soft lithography) and antibacterial activity towards XL-1 blue E. coli was studied [139]. Within 120 min, all bacteria (5 × 10⁴ CFU/ml) were killed upon exposure to the AgNP-zeolite membrane. The rationale for creating the patterned zeolite structure was to increase the contact points with the bacteria, as is evident from Fig. 17, a micrograph of the patterned zeolite.

Nagy et al. investigated the antibacterial activity of AgNP embedded within a zeolite membrane towards XL-1 blue E. coli and S. aureus (MRSA) [10]. Bacterial growth was completely inhibited over a 3 h incubation period for E. coli (10⁶ CFU/ml). The supernatant from the membrane in broth also exhibited comparable activity, indicating that Ag⁺ release from the AgNP is responsible for the antibacterial activity. Concentrations of ~20 ppm Ag⁺ were noted in the broth after 48 h. The AgNP-zeolite membrane was bacteriostatic towards S. aureus. This study also showed upregulation of several antioxidant genes as well as genes coding for metal transport, metal reduction and ATPase pumps upon exposure of E. coli to AgNP-membrane. The antibacterial mechanism of AgNP was related to minimization of antioxidant capacity.

Summarizing, we note that

- Ag-exchanged self-standing zeolite membranes on supports are effective antimicrobials.
- Ag⁺ released from zeolite membranes showed upregulation of several antioxidant genes.

5. Zeolite-silver supported on matrices and their antimicrobial activity

5.1. Zeolite/polymer composites

Incorporation of silver zeolites into polymers is an active area of research, motivated by numerous possible applications, considering the ubiquity of polymers.

5.1.1. Synthetic polymers

5.1.1.1. Polyvinylidene fluoride. Inoue et al. investigated antibacterial activity towards E. coli (NIHJJC2) of silver ion exchanged zeolite X incorporated into polyvinylidene fluoride (PVDF) films [140]. There was no activity in N₂-saturated media, while under aerobic conditions, bacterial count of 10⁶ CFU/ml was reduced to ~1 CFU/ml within 5 min. The Ag⁺ released from the zeolite/PVDF composites was <10⁻⁷ M, and was not considered relevant for antimicrobial activity. Bactericidal activity was proposed to be arising from
superoxide, hydrogen peroxide, hydroxyl radicals and singlet oxygen based on results with various ROS scavengers. The exact mechanism by which Ag⁺-zeolite X is activating the dissolved oxygen to form the ROS was not discussed.

Shi et al. examined the antimicrobial effectiveness of a dual layer hollow fiber PVDF ultrafiltration membranes containing Ag⁺-zeolite Y or AgNP-zeolite Y (6.4 wt% silver) in salt water [141]. The silver zeolites were incorporated in the outer part of the hollow fiber in a dry-jet wet-spinning process. Silver ion release from the AgNP membrane was slower than with the Ag⁺ membrane, upon exposure to PBS buffer or salt water. In deionized water, the Ag⁺ release from the AgNP-membrane was greater than the Ag⁺-membrane. The antibacterial activity of the AgNP-membrane, as measured by killing of E. coli was longer term as compared to the Ag⁺-membrane. These silver-loaded PVDF zeolite membranes were resistant to bacterial adhesion.

5.1.1.2. Polyterephthalate. Abo El Ola et al. studied fiber filaments prepared by mixing Ag⁺-exchanged zeolite X (1–4 μm) with hydrophobic poly(trimethylene terephthalate) chips (0.5 wt% zeolite) (75,500 g/mol MW) and then sent through a screw extruder (256°C, 4000 m/min) [142]. The tensile strength and Tg were slightly altered from the native filament. There was a color change during the processing, possibly due to formation of metallic silver. With Ag⁺ content of 516 ppm in the polymer, 91% reduction of E. coli (10⁶ CFU/ml) over a 24 h period for the polyurethane was noted by infrared spectroscopy, especially with samples that contained >3 wt% zeolite.

5.1.1.3. Polyurethane. Kamisoglu et al. incorporated Ag⁺-exchanged zeolite beta (Si/Al = 9.4, 5.53 wt% Ag) and zeolite A (Si/Al = 1.2, 10.6 wt% Ag) into a polyurethane polymer [143]. The mechanical properties of the polymer improved upon zeolite incorporation. Both zeolite/polymer samples exhibited antimicrobial effect towards E. coli as measured by the disc diffusion method. Qualitatively, the zone of inhibition around Ag⁺ zeolite A/polymer pellet was greater.

Kaal et al. incorporated Ag⁺-zeolite A (Zeomic) into polyurethane via injection molding and into silicone rubber (prior to cross linking) [144,145]. The antimicrobial properties of polymer test pieces towards S. aureus (MRSA) (ATCC 43300), P. aeruginosa (ATCC 27853) and several fungi strains were investigated. In general, increase in the Ag⁺-zeolite content (1–5 wt%) resulted in improved antimicrobial effect. Decrease by a factor of ~8 was noted for MRSA (8 × 10⁶ CFU/ml) over a 24 h period for the polyurethane and factor of two for silicone with 5 wt% zeolite. Fungal growth on the polymer specimens also decreased with zeolite content. Incorporation of the zeolite enhanced the degradation of the polyurethane and silicone towards artificial body fluids.

In another study, Kaali et al. incorporated Ag⁺, Zn²⁺ and Cu²⁺-exchanged zeolite (single, binary and ternary ions) (Zeomic) into thermoplastic polyester type polyurethanes [145]. The antimicrobial activity towards S. aureus (MRSA), P. aeruginosa and C. tropicalis was tested. Ag⁺ containing samples exhibited the strongest inhibition effect, e.g.,10⁷ CFU/ml to <10⁵ CFU/ml for MRSA in 24 h, and Cu²⁺-zeolite decreased the number of C. tropicalis. Combination of ions increased the inhibition effect. Incorporation of zeolite altered the water uptake of the polyurethane due to the hydrophilic nature of the zeolite and zeolite migration to the surface of the polymer was noted. The contact angle of the polymer decreased as a function of time upon exposure to artificial body fluids (24 weeks), possibly due to water adsorption by the zeolite. Increased degradation of the polyurethane was noted by infrared spectroscopy, especially with samples that contained >3 wt% zeolite.

5.1.1.4. Polyamide. Lind et al. incorporated Ag⁺-zeolite A into polyamide film by introducing zeolite nanocrystals (140 nm) during the interfacial polymerization step [146]. The Ag⁺-zeolite powder exhibited significant antimicrobial activity towards Pseudomonas putida (10⁶–10⁷ cells/ml) based on a qualitative assessment of fluorescence from live and dead cells. However, upon incorporation of the Ag⁺-zeolite in the polymer, the bactericidal activity disappeared. The interfacial polymerization reaction resulted in darkening of the film due to formation of insoluble silver species. Silver precipitation within the polymer and inability to escape from the polymer was held responsible for the lack of bactericidal activity.

5.1.1.5. Polyethylene. Xu et al. surface modified (chemistry not specified) Ag⁺, Zn²⁺-zeolite (not specified) followed by incorporation into polyethylene by melt extrusion [147]. Mechanical properties of the polyethylene worsened with increasing zeolite, but <6 wt% zeolite provided acceptable polymer samples. The 6 wt% zeolite/polymer showed a reduction of 99.99% growth of S. aureus, Colibacillus (starting with 2 × 10⁵ CFU/ml).

Boschetto et al. studied low density polyethylene films containing 1–10 wt% of Ag⁺-zeolite Y (5 wt% Ag) prepared by hot casting and wet casting methods [148]. The melting and crystallization temperature of the polymer was unaltered upon zeolite incorporation. The zeolite powder exhibited a MIC of 0.5 mg zeolite/ml (24 h test) with E. coli ATCC 25922. The antimicrobial property of the polymer film prepared by the wet casting method was superior, though based on the inhibition halos, these films were in general, poor antimicrobial materials, possibly due to inability of the Ag⁺ from the polymer encapsulated zeolite to be released into the medium.

Cushen et al. incorporated commercially available Ag⁺-zeolites (Aglon) into polyethylene via a screw extruder extrusion process (0.5–2 wt% loading of zeolite) [149]. Migration of Ag⁺ from these composites into water was a 3% acetic acid was examined for a period of 10 days at 40 °C. For a 2 wt% zeolite loading, 6.07 × 10⁻³ and 3.32 × 10⁻³ mg/l of Ag⁺ was found in water and acetic acid, respectively. It was concluded that <0.5 wt% of zeolite needs to be used in contact with non-acidic foods to meet the regulatory level of 0.001 mg/kg of dissolved silver.

5.1.1.6. Polysulfone. Hoek et al. incorporated Ag⁺-exchanged zeolite A (250 nm) and Ag⁺, Cu⁺ micron sized zeolite A (1.8–6.5 μm, Aglon) into polysulfone ultrafiltration membrane [150]. The zeolite incorporated membranes were more wettable, but with lower mechanical strength as compared to polysulfone membranes. The larger zeolite particles had poor binding with the polymer. Membranes with the Ag⁺-nanozeolite A had lower bacterial adhesion.
possibly due to lower contact angles and better bactericidal properties as compared to the membrane with metallic NP.

5.1.1.7. Polyvinylchloride. Zampino et al. incorporated commercial sample of Ag\(^{2+}\)-zeolite (Aglon) into PVC by melt mixing [151]. With 2–20 wt% zeolite incorporation, the elongation at break (EB), and tensile strength (TS) of PVC were mostly unchanged, whereas the elastic modulus increased as shown in Fig. 18. Stiffening of the composite with increasing zeolite was noted, though processing ability was unchanged. The Ag\(^{2+}\)-zeolite/PVC (20 wt% Ag) inhibited growth of E. coli (5 × 10\(^4\) CFU/ml) up to 7 days, whereas it was lower for S. epidermis (no growth for 24 h). A 7 log\(_{10}\) reduction was noted in sterile urine for E. coli (10\(^8\) CFU/ml) within 24 h and activity was maintained for 20 days. With S. epidermis, activity was maintained for 5 days, consistent with the thicker cell wall of the Gram-positive bacteria. The amount of silver released into urine varied with time with 0.365 ppm in the first 24 h (38% of total amount eventually released), and decreased to 0.07 ppm for urine varied with time with 0.365 ppm in the first 24 h (38% of total amount eventually released), and decreased to 0.07 ppm for

5.1.1.8. Polyvinylalcohol. Kim et al. incorporated zeolite nanoparticles (50 ± 10 nm) with 5–10 nm Ag particles (commercial sample from MiJi Tech Co, Korea) into polyvinylalcohol (PVA) hydrogels [152]. The polymerization reaction was initiated with UV radiation. The hydrogel hardness decreased with increasing amounts of Ag-zeolite, and had the consistency of a soft elastomer at 5 wt% zeolite. Reduction of S. aureus and Klebsiella pneumonia by 99.9% within 18 h was noted with the PVA-zeolite composite with a zeolite loading of 3 wt%.

Wu et al. modified the surface of Ag\(^{2+}\)-zeolite X (150 nm) with 3-aminopropyl(diethoxy)methylsilane, and coated the modified zeolites on nanofiltration membrane using either polyvinylalcohol (PVA) or polydopamine (PDA) [153]. The membranes were reduced with NaBH\(_4\) to generate AgNP. Zeolites were clearly observable by SEM on the membrane surfaces. Two PVA coatings with 22 and 13 wt% zeolite coatings, which corresponds to 37.5 and 18.6 mg/m\(^2\) of silver loading, respectively were prepared. The coatings with the zeolite led to significant decreases in water permeability through the membrane, being more significant with PVA. Also, two PDA coatings with 20.5 and 9.6 mg/m\(^2\) of silver and zeolite surface coverage of 15% were prepared. All samples showed significant antimicrobial activity towards P. aeruginosa (ATCC 700829), with higher loading Ag samples showing more activity e.g. the higher loading PVA sample completely inactivated the bacteria in the culture suspension for 5 days (starting concentration 1 × 10\(^8\) CFU/ml with repeated 24 h exposures. Cell attachment to the membrane surface was also reduced with the zeolite-coated samples, even after 9 days of repeated incubation, well after the inhibitory influence in the suspension (5 days). The Ag\(^{2+}\) release into NaCl solution from the AgNP sample was lower than the Ag\(^{2+}\) exchanged sample (e.g. with the high loaded PVA, 45.71% versus 32.2% after 7 days for Ag\(^{2+}\) and AgNP, respectively). All samples reached steady state of Ag\(^{2+}\) release within 4–5 days, with 31–54% of Ag still retained in the membrane. Though the higher loading Ag samples exhibited better antimicrobial activity, the activity did not correlate with the cumulative release of Ag, indicating that measured bulk concentration may be lower than at the membrane surface.

5.1.1.9. Silicone elastomers. Belkhair et al. incorporated organosilane surface-derivatized Ag\(^{2+}\)-exchanged zeolite X (Ag 8.8–14.1 wt %) into silicone elastomers [154]. The zeolite surface functionalization led to uniform dispersion and good mechanical properties of the polymer. The antimicrobial properties of these polymers were tested with E. coli (ATCC 8739) (4 × 10\(^4\) CFU/ml) and Staphylococcus epidermis (NTCC 11046) (2 × 10\(^4\) CFU/ml), and yeast C. albicans (NCYC 1363) (2 × 10\(^6\) CFU/ml). With 24 h exposure, E. coli decreased by 5 log\(_{10}\) and S. epidermis by 4 log\(_{10}\) counts. C. albicans was not influenced by the AgX-polymer. Silver dissolution from the polymer was of the order of 0.005 ppm, and no trend was observed between dissolved Ag and antimicrobial activity. With E. coli, the surface modified and unmodified AgX exhibited similar activity after 5 h incubation, as shown in Fig. 19. For S. epidermis, the derivatized sample was not as effective (cell counts was higher by two orders of magnitude). It is possible that surface derivatization slowed the ion-exchange process. This study also used a neutralizing agent (thiosulfate + thioglycolate) to stop further activity of Ag\(^{2+}\) prior to bacterial counts.

5.1.1.10. Polyetherketone. Hamciuc et al. silylated zeolite L (200 nm) with 3-aminopropyl(diethoxy)methylsilane, ion exchanged the zeolite with Ag\(^{2+}\), and incorporated into aromatic poly(etheretherketone) (PEEK), zeolite loading of 2, 7 and 12 wt % [155]. The antimicrobial activity towards S. aureus (25923), S. aureus MRS (TCC43300) and E. coli (ATCC 25922) was noted by the agar diffusion method, and best antimicrobial results were obtained with the 12 wt% Ag-zeolite sample (24 h). Cell viability with rabbit fibroblasts, as measured by the MTT assay was 82.3% of control zeolite for the 12 wt% Ag-zeolite sample (24 h exposure).

5.1.2. Biopolymers

5.1.2.1. Polylactic acid. Films of polylactic and with commercial (Zeomig) Ag\(^{2+}\)-zeolite A were prepared by solution casting and melt method with a zeolite loading of 5 wt% by Fernandez et al. [156]. These films are mimics for food packaging, and the release of Ag\(^{2+}\) in simulated food solvents was examined. After 24 h contact, 0.043 ppm Ag\(^{2+}\) in distilled water, 0.35 ppm in TSB broth, 0.029 ppm in 95% ethanol, and 0.71 ppm in acetic acid was released from the solution casted polymers. In water, about 1 log\(_{10}\) unit decrease (10\(^6\) CFU/ml) was noted for both E. coli (CECT 515) and S. aureus (CECT 86) for the solution cast films, whereas the melt films did not exhibit any activity. The amount of Ag\(^{2+}\) released in water is small since ion-exchange is minimal. The study concludes that food matrices require higher amounts of Ag\(^{2+}\) (~5 ppm Ag\(^{2+}\)) for activity due to chelating agents and salts that can precipitate the Ag\(^{2+}\). Regulations, however, limit exposure of foods to 0.05 ppm Ag\(^{2+}\).

Prapruddvongs et al. prepared polylactic acid (PLA) and wood flour/PLA composites with Ag\(^{2+}\)-zeolite A (Zeomig, 0.5–10.5 wt%) using a twin screw extruder [157]. The tensile strength decreased
with addition of zeolite e.g. with 1.5 wt% zeolite, from 49.48, 48.16, 41.77 MPa to 48.61, 43.8 and 11.01 MPa for PLA, 5% wood/PLA and 10% wood/PLA, respectively. The zeolitic water was proposed to promote PLA hydrolysis. None of the PLA samples with zeolite retarded S. aureus growth. Biodegradation was also enhanced in the presence of zeolite, possibly related to the hydrolysis.

5.1.2.2. Natural rubber. Ag⁺-exchanged zeolite (structure not specified) were incorporated into natural rubber (1–5 wt% zeolite) by Jai-eau et al. and Vulcanized by 3 different methods [158]. The presence of zeolite did not influence the vulcanization reaction. With 5 wt% zeolite in the rubber, 3 log₁₀ reduction was noted with E. coli (ATCC 25922) and 2 log₁₀ reduction with S. aureus (ATCC 25923) for a contact time of 240 min.

5.1.2.3. Alginate (polysaccharide). Ag⁺-zeolite (micron size, structure not specified) was incorporated into alginate (polysaccharide extracted from seaweed) films by Shankar et al. [159]. The transparency was reduced by a factor of 4, and the thermal strength decreased by 40%, and the water permeability was unchanged. These films exhibited potent antibacterial activity against E. coli and L. monocytogenes, with MIC/MBC of 3.125/12.5 μg/ml and 6.25/12.5 μg/ml, respectively. The Ag concentration in the films that exhibited the antimicrobial effect was 7.5 μg/ml, considerably lower than the levels required for toxicity against C2C12 cells at >40 μg/ml, against BRL 3A rat liver cells >24 μg/ml and human fibroblast (IMR-90) and glioblastoma cells (U251) at >25 μg/ml.

Much work has been done on silver zeolite incorporation in polymers, and can be summarized as:

- Processing of zeolite into polymers can be carried out at high temperature (256 °C).
- Processing has included screw extrusion, melt mixing, melt extrusion, injection molding, interfacial polymerization, photochemical polymerization.
- Mechanical properties of polymers can improve or degrade depending on the polymer and the processing conditions.
- Incorporation of zeolite into the polymer can enhance water uptake and permeability and also promote degradation.
- Polymer can entrap the silver zeolite, or precipitate the silver stopping release of Ag⁺ and diminishing antimicrobial activity.
- Transparency of the polymer can be reduced by silver zeolite incorporation.
- AgNP-zeolite loaded membranes exhibited longer term antimicrobial effects in high ionic strength solutions as compared to Ag⁺-zeolite loaded membranes.
- Silver zeolite in polymers exhibited cytotoxicity towards eukaryotic cells at concentrations higher than that required for antimicrobial activity.

5.2. Zeolite/textile composites

5.2.1. Cellulose

Lim et al. deposited Ag⁺-zeolite Y dispersions mixed with binders on cellulose fibers [160]. The fibers with the smaller Ag⁺-zeolite particles (~300 nm) exhibited better deodorant properties towards NH₃ than micron-sized particles, though both exhibited comparable antimicrobial activity towards Staphylococcus ATCC 6538.

Cellulose mats were generated by an electrospinning process by Rieger et al., and zeolites were introduced in the mats [161]. Three samples were investigated, zeolite A (~6 μm) was grown on top of the cellulose, nanocrystals (~150 nm) and mesoporous zeolite A was incorporated inside the cellulose by electrostatic attraction. Electron micrograph of mesoporous zeolite particles attached to the fiber are shown in Fig. 20. These samples were ion-

exchanged with Ag⁺ and examined for their antimicrobial activity towards E. coli (K12 MG1655, 10⁷ cells/ml). Maximum exchange of Ag⁺ was 60–67% of theoretical ion-exchange capacity of zeolite. Viability loss of the bacteria was determined by a fluorescence assay. The 30 min incubation time provided the most instructive results. Ag⁺-zeolite A grown on cellulose killed 70%, nano Ag⁺-zeolite A killed 90% and Ag⁺ mesoporous zeolite A killed 85% of cells. The amount of silver released was 0.3150, 0.0275, 0.007 and 0.007 mg for the zeolite A in suspension (4 mg of zeolite), zeolite A/cellulose (0.3488 mg of zeolite), nanozeolite/cellulose (0.697 mg of zeolite) and mesoporous zeolite/cellulose (0.0687 mg of zeolite), respectively. Clearly, use of the cellulose enhances the biocidal activity, though releasing less Ag⁺ into solution. It was proposed that the microstructure of the cellulose promoted bacteria transport, providing more intimate contact with Ag⁺.

5.2.2. Cotton

Sacchetti examined cotton fabrics with chitosan, Ag⁺ zeolite A (3–5 μm zeolite, Ag-0.3 wt%) and composite of chitosan/Ag-A. A pad-dry-cure process was used for incorporation of zeolite into cellulose [162]. The fabric with chitosan/silver zeolite was effective (100% reduction in 20 h, 10⁴–10⁶ CFU/ml) towards E. coli, S. aureus, C. albicans and T. rubrum. A synergistic effect was noted with chitosan/zeolite as compared to fabric with chitosan or zeolite. The amount of Ag⁺ released from the fabrics was of the order of ~70 ppb.

Release of Ag from textiles during washing has been noted, though no such studies exist with silver zeolites embedded in textiles [18, 163, 164].

The observations on silver zeolite textiles can be summarized as:

- Zeolites can be incorporated into cellulose by binders and electrospinning and pad-dry process for cotton.
- Silver with smaller zeolite crystals are more effective antimicrobial agents.
- Chitosan and Ag⁺ combination in cotton had synergistic antimicrobial effect.
- Microstructure of cellulose enhanced bacterial transport, thereby promoting interaction with entrapped zeolites.

5.3. Zeolite/metal coatings

5.3.1. Stainless steel

Galeano et al. coated stainless steel coupons with Ag⁺ (2.5 wt%), Zn²⁺ (14 wt%) exchanged zeolite A (commercial sample AgIon) and
exposed them to vegetative cells of the three Bacillus spores, B. anthracis Sterne, B. cereus strain T and B. subtilis strain 168 (10^6–10^7 CFU/ml) [165]. There was a 3 log_{10} inhibition of the vegetative cells (2–24 h) but no effect on the viability of the spores (24–48 h). Autoclaving decreased efficiency of the coated steel.

Cowen et al. coated zeolite (commercial sample AgIon) containing 14% Zn^{2+} and 2.5% Ag^{+} on stainless steel with the help of epoxy by a wet and dry (electrical) method and heat treated the sample to form a continuous film [166]. It was proposed that the Zn^{2+} provides a slower release of Ag^{+}, though the media/conditions in which these experiments were carried out was not specified. The antimicrobial activity towards E. coli ATCC 25922, P. aeruginosa 27853 and S. aureus ATCC 25923 was investigated. With the zeolite powder alone, the MBC was 3.13 mg/ml (78 μg Ag/ml, grown in LB) for E. coli and 1.56 mg/ml (39 μg Ag/ml) for S. aureus and P. aeruginosa (grown in TSB). The ionic strength of the two media is different and so the ion-exchange dynamics of Zn^{2+}/Ag^{+} from the zeolite are different. With the zeolite-coated stainless steel, S. aureus (>1 × 10^6 CFU) was reduced by 3.6 log_{10}, and 5 log_{10} reduction for E. coli, both with a 6 h exposure. Both bacteria exhibited >99.9% reduction in 24 h. Repeated tests and washing exhibited decreased efficacy, especially at the 4 h mark, but the 24 h efficacy was still >90% over 11 trials. P. aeruginosa exhibited similar sensitivity to the other two bacterial species.

Zeolite A was grown on stainless steel coupons, and ion-exchanged with 0.01 M Ag^{+} solution by McDonnell et al. [167]. These coupons were exposed to E. coli (JM 109. 1 × 10^6 cells/ml), and immediately upon contact, the average count decreased by five orders of magnitude, whereas stainless steel and zeolite coated stainless steel had no bactericidal activity. Within 24 h, there were no surviving cells on the Ag^{+}-zeolite coupons.

Bedi et al. ion-exchanged Ag^{+} into zeolite A-coated stainless steel with 38–40 wt% Ag loading [168]. These materials were very effective in killing bacteria, E. coli, Listeria innocua, S. epidermidis, fus-gus Aureobasidium pullulans and marine yeast Rhodotorula mucilaginosa. E. coli (10^6–10^7 CFU/ml) was completely killed upon contact, even after 24 repeats of the test. The Ag^{+} was not released from the zeolite upon storage in water, and lost ~0.4% upon each bacterial challenge (buffer used in the bacterial tests contained K^+, which replaces the Ag^{+} in the zeolite), as shown in Fig. 21. For all four bacterial challenges, similar bactericidal effect was observed.

5.3.2. Titanium alloys

Using a hydrothermal method, zeolite A coatings was grown on titanium alloys by Wang et al. [169]. The sample was ion exchanged with Ag^{+}, and antibacterial activity towards S. aureus (MRSA) evaluated. Ag^{+} release into simulated body fluid occurred rapidly within the first 24 h (70% of Ag from 2.3 wt% silver in zeolite) and then slowed down. The Ag^{+}-Alloy completely stopped the growth of S. aureus (~10^6 cells/ml), and exhibited no cytotoxicity towards L-929 fibroblasts by MTT assay.

Silver zeolite coatings on metals can be summarized as

- Zeolites grown hydrothermally on stainless steel can ion-exchange with Ag^{+} to generate an antimicrobial surface.
- Zeolite coatings on steel can be made with epoxy.
- Autoclaving the zeolite-coated stainless steel can decrease activity.
- Repeated tests with silver zeolite on stainless steel maintained antimicrobial activity.

5.4. Dental materials

Padachey et al. incorporated commercial Zeomic (zeolite A) into a glass ionomer cement (0.2 wt% zeolite) to be used as a root canal sealer [170]. This in vitro study showed that the inclusion of the zeolite did not alter or inhibit the growth of Enterococcus faecalis with the zeolite-based root canal sealer. The zeolite-glass composite in a direct contact test is known to suppress the adherence of E. faecalis.

Abe et al. incorporated Ag^{+}-zeolite A (Zeomic) into polymethylmethacrylate as a model for tissue conditioner for dental use [171]. Antimicrobial activity in human saliva towards S. aureus, MRSA, C. albicans was noted but not towards P. aeruginosa, possibly because it produced a biofilm on the tissue conditioner.

Dentures made from acrylic resins tend to attract bacteria and can cause infections. Biofilm formation has also been noted on these polymer surfaces. Infections by C. albicans yeast is common and causes candidiasis. Casemri et al. incorporated 2.5 wt% Ag^{+}-zeolite (commercial Irgaguard B5000) into acrylic resins prepared by microwave and heat polymerization and found antimicrobial activity against C. albicans and S. mutans, as measured by the agar diffusion method [172]. Both the flexural strength and impact strength of the resin decreased upon incorporation of 2.5–5.0 wt % zeolite.

Odabus et al. added Ag^{+}-exchanged zeolite A (0.2–2 wt%) to the dental cement material, mineral trioxide aggregate and antimicrobial activity towards several microorganisms was tested by the agar diffusion method [173]. Presence of the silver zeolite inhibited growth of E. faecalis, S. aureus, Prevotella intermedia, Actinomyces israelii, Porphyromonas gingivalis, C. albicans but had no effect on P. intermedia and A. israelii. About 0.86 ppm of Ag^{+} was released into water in 24 h from the 2 wt% silver zeolite-cement sample. The material properties of the cement in the presence of zeolite was not evaluated.

Soft liners are used by denture wearers and used during other dental procedures as a tissue conditioner. Over time, these liners can be host to bacteria and fungi. To minimize the colonization, Saravan et al. investigated the use of silver zeolite (details not specified) introduced into acrylic soft liners [174]. The viscoelastic properties of the acrylic was not compromised as compared to control sample. The growth of C. albicans and a bacteria (not specified) was decreased by 65% for a patient over a period of 28 days.

The effectiveness of Ag^{+}-zeolite (structure not specified) as a root canal irrigant was investigated by Ghivari et al. against biofilms made from C. albicans, E. faecalis and S. aureus [175]. Exposures for 1 min showed that the zeolite was not as effective as NaOCl, chlorhexidine and octenidine.

Fig. 21. Percentage Ag (g/g) within the Ag^{+}-zeolite A coating on stainless steel after up to 24 repeated E. coli challenges (24 h incubation) (adapted from Ref. [168]).
The summary of dental materials is

- Zeolites can be incorporated into glass-based cements and polymers for dental applications.
- Acrylic resin strength decreased with zeolite incorporation, whereas viscoelastic properties were not compromised.

5.5. Environmental/consumer materials

5.5.1. Odor prevention

The effectiveness of a Ag-zeolite powder spray (Zeomic dispersed into oil and propellant) towards skin-resident odor causing bacteria was studied by Nakane et al. [176]. The bacterial strains Micrococcus luteus (JCM 1464), Brevibectorium epidermis (JCM 2593), Corynebacterium amycolatum (JCM 7447) and S. epidermis (IFO3762) were isolated from human skin. The MIC of Ag-zeolite against these bacteria were 5–50 mg/cm² (starting CFU of 5×10^5/cm² of skin contact area). Powder sprays with >5 wt% zeolite exhibited 3–4 log₁₀ reduction of bacteria in a 6 h period. Clinical studies with human volunteers showed that 10 wt% powder sprays applied to the exilla was an effective antimicrobial. Human patch tests and a 4-week safety test of the powder zeolite spray showed no adverse events.

5.5.2. Ventilation/air conditioning

Rizzetto et al. reported that ventilation and air conditioning system ducts (traditional galvanized iron lined with polyurethane tiles) when coated with Ag-zeolite (commercial AgIon) reduced the bacterial load of the emerging air by 75–80% as compared to the air from a traditional galvanized air duct [177]. The laminates were 80–120 µm thick, and exhibited antibacterial property towards Legionella pneumophila (ATCC 33152), S. aureus (ATCC 6538), P. aeruginosa (ATCC 15422), E. coli (ATCC 8739), C. albicans (ATCC 10231) and A. niger (ATCC 6275), with 5–7 log₁₀ unit decrease in CFU/ml over a 24 h period. Samples of polyurethane covered by silver zeolite aluminum panels placed in a hospital environment exhibited antimicrobial activity after 2½–3 years. In such HVAC applications, only bacteria on the panels can be killed, if the right moisture conditions and ion-exchanging ions are available.

5.5.3. Metal door handles

Potter et al. reported on a study of door handles. 60–70 µm thick coatings containing 2–5 µm silver zeolite particles were applied on door handles in a university campus [179]. Over a 3-year period, the door handles were sampled weekly for bacteria. A statistically significant difference of bacterial populations between the control and silver-coated door handles was observed. However, there were instances when the silver zeolite-coated door handles had higher bacterial count, or the differences with the control handles was minimal. Several reasons were proposed for these observations, including silver zeolite being effective only on a subset of bacteria and insufficient release of silver. It is possible that the silver zeolite crystals embedded deep within the coatings are also not being effective.

5.5.4. Cement/concrete

Haile et al. noted that impregnation of Ag⁺-commercial zeolite (AgIon, with co-cations of Cu²⁺ or Zn²⁺) on the surface of mortar specimens reduced bacterial-induction corrosion, as measured by

Fig. 22. Total Bacterial Count (cfu/mc) in the air at outlet ducts with Ag⁺-zeolite A coated and uncoated ducts (adapted from Ref. [177]).
leaching of Ca\(^{2+}\) and Si\(^{4+}\) from the cement [180]. Activity of thiobacilli species, responsible for corrosion is reduced in the presence of Ag\(^{+}\)-zeolite, as noted by the drop in pH.

In another study, Haile et al. measured bacterial induced corrosion of zeolite coated (commercial AgIon) concrete against *Acidithiobacillus thiooxidans* by measuring biomass dry cell weight, sulfate generation and oxygen uptake [181]. Zeolite bonding to the concrete was done with epoxy. Use of the zeolite (5 wt% Ag) reduced planktonic and *A. thiooxidans* biofilm formation.

5.5.5. Paper

FDA has approved the use of micron-sized zeolites at ≤5 wt% in food contact surfaces. Lee et al. impregnated commercial AgIon (2.5 wt% zeolite A) on tissue papers and tested for their ability to prevent bacterial growth of *P. putida* [182]. With 4% silver zeolite paper, there were fewer bacterial colonies as compared to controls. Storage of beef, pork and turkey for 3 days on the zeolite paper led to 1.2, 0.9 and 1.0 \(\log_{10}\) reduction in *P. putida* growth at 10 °C. At 4 °C, the silver zeolite did not have any effect. It appears that silver zeolites are more effective in broth as compared to real foods, since ion-exchange is facilitated.

Jederzejczyk et al. incorporated Ag\(^{+}\)-exchanged zeolite Y into paper prepared by pulling vacuum on a mixture of the wet pulp and zeolite, followed by drying of the sheets [183]. The zeolite content in the paper was 44 wt%. Antibacterial activity towards *Serratia marcescens*, *E. coli*, *B. subtilis*, and lower activity towards *B. megaterium* was noted using the LuciPac Pen test (measures the relative content of ATP and AMP). The Ag\(^{+}\)-zeolite containing paper exhibited higher antimicrobial activity than a paper with AgNP. Several fungi samples were also investigated, and resulted in conditions (35–93% relative humidity) [184]. In the presence of growth medium, no antibacterial activity of the boards were observed. This study concluded that under practical food preparation conditions, the cutting boards were not effective antimicrobial agents.

Griffith et al. grew zeolite films on stainless steel (the XRD of the deposit on the steel was not analyzed, so it is unclear if zeolite growth did occur, though SEM and AFM show a coating) [185]. Upon Ag\(^{+}\) exchange, the stainless steel coupons inhibited bacterial growth on the surface (*L. innocua*, *E. coli*). This study proposed that zeolite coated stainless steel can be used in food processing.

Ag\(^{+}\)-zeolite (micron size structure not specified) was incorporated into low density polyethylene (LDPE), fabricated into active layers of multilayer films (LDPE – polyamide-active LDPE) via a blown film extraction process by Soysal et al. [186]. These films were used to store chicken for 0–6 days. The meat was analyzed for total coliform, aerobic mesophilic bacterial, molds and yeasts. Along with silver zeolite, polymer films were also made with chitosan, nisin, potassium sorbate. All films had a protective effect. The performance of the films for total coliform and bacteria was in the order chitosan > nisin > Ag-zeolite > sorbate, and for mold and yeast reduction chitosan > sorbate > nisin > Ag-zeolite (5 °C for 6 days). Fig. 23 shows the data with the aerobic mesophilic bacteria (APC).

Summary for consumer applications of silver zeolites is

- Zeolites can be incorporated into a powder spray.
- Human patch tests of the powder spray showed no adverse events over a 4-week test.

Fig. 23. Effects of antimicrobial packages on aerobic mesophilic bacteria (log cfu/g) of chicken drumsticks stored at 5 °C for 6 days (adapted from Ref. [186]).

- Silver zeolites incorporated into HVAC duct panels exhibited antimicrobial activity over 3 years.
- Bacterial corrosion of concrete is reduced by incorporation of silver zeolites.
- Zeolites can be incorporated into paper by wet pulp method.
- Humid conditions are necessary for zeolite-incorporated cutting boards to exhibit antimicrobial activity.

6. Environmental, toxicity and regulatory issues

It is fair to say that almost all of the regulatory issues are being driven by the increased use of silver colloids. Silver zeolites are not yet treated as a separate entity. It is expected that regulations of silver zeolite will be driven by decisions made with silver colloids. Also, most environmental and toxicity studies focus on silver colloids, and only a few studies exist with silver zeolites. Since it is apparent that silver colloids will drive the regulations on silver zeolites, this section is focused primarily on silver colloids. Even though our discussion on silver colloids is brief, since there are many recent reviews covering this area, we do discuss all the papers dealing with *in vitro* studies of silver zeolites with eukaryotic cells.

6.1. Environmental concerns with silver colloids

These is concern that since the amount of nanosilver is increasing, this will result in release of the silver into the environment [187–189]. Estimtes of 4 tons per year 2005 increasing to 563 tons per year of silver nanoparticles in 2008 is reported [7]. The data confirming these estimates are not available. Another model in 2009 suggests that amount of silver is 0.5–2 ng/L in water, and 32–111 ng/L in outflow of sludge (low to high values 15–85%), and that these numbers will increase [190]. There is concern that silver present in mud and seawage can spread to agricultural fields. Silver used in building materials, such as paints can be released into the soil [191]. Silver in soil can be absorbed by plants, and appear in foods consumed by humans and animals [192].

Another environmental concern is the possibility of development of antimicrobial resistance towards silver [193]. Jelenko et al. noted as early as 1969 that *E. coli* isolated from prolonged (47 days) silver-nitrate-treated-burn was silver-resistant [194]. A silver-resistant salmonella typhimurium strain was isolated from silver nitrate treated burn in the 1970s [195]. There are reports of a *Bacillus* sp. bacterial to nanosilver [196]. In 2015, a *E. coli* strain
tolerant to nanosilver upon prolonged exposure was reported [197]. Thus, vigilance is required for monitoring for resistance development as more widespread use of nanosilver becomes prevalent.

6.2. Silver zeolite interactions with eukaryotic cells

As far as in vitro eukaryotic cell culture studies, there are numerous papers using AgNP or Ag⁺, and has been recently catalogued [21]. Since our focus is on silver zeolites, we refer the reader to the review and references, therein. Cells studies included alveolar epithelial cells, astrocytes, embryonic testicular carcinoma cells, embryonal stem cells, epithelial HeLa cells, fibroblasts, hepatocellular carcinoma cells, gill cells, lung cells, macrophages, mesenchymal stem cells, adrenal medulla cells, ovary cells, prosteoblasts, and T cells. It can be generally stated that for cytotoxic effect, concentration of 1–10 μg/ml for Ag⁺ and 10–100 μg/ml for AgNP is required.

Several studies of cytotoxicity with zeolites (without silver) with a wide variety of cell lines are reported. The most critical observation is that cytotoxicity is dependent on dosage. With silicalite, high dosages in excess of 0.5 mg/ml exhibited toxicity for 30 and 150 nm particles [198,199]. With nanosized zeolite L, ZSM-5, and zeolite A, necrosis was noted with HeLa cells at dosages exceeding 50 μg/ml. Presence of aluminum in the framework was considered relevant for cytotoxicity [200]. Zeolites used in hemo- static dressings were nontoxic at concentrations below 100 μg/ml [201]. In another study with 25–100 nm zeolite Y and A, no toxicity was noted up to doses of 500 μg/ml, and the zeolite particles were less toxic than amorphous silica [202]. Silicalite was found to cause reactive oxygen species generation and DNA fragmentation at 100 μg/ml, though no effect on cellular proliferative capacity was noted [203]. With nanosized EMT and zeolite L, no cytotoxicity towards HeLa cells was noted at concentrations of 400 μg/ml. Disc-shaped zeolite L was internalized by HeLa cells, and exhibited cytotoxicity at concentrations >100 μg/ml, with positively charged particles exhibiting higher toxicity [204,205]. PEG-modified zeolite A had a cytotoxic effect only at dosages of 50 μg/ml after 72 h treatment, with longer chain PEG having a more protective effect [206]. Zeolites are considered Generally Regarded As Safe (GRAS) materials for use in cosmetics [207].

The number of studies with eukaryotic cells and silver zeolites is much smaller and the focus of this section. The cytotoxicity against human skin epithelial cells (WM-115) required >128 μg/ml of Ag⁺-hierarchical zeolite, and for human skin fibroblasts (Detroit 551) and monocytes (U-937) concentrations of 64 μg/ml was required for reduction in viability. These cytotoxic concentrations were significantly higher than the MIC/MBC concentrations [127]. With peripheral blood mononuclear cells, silver zeolites with a dosage of 50 μg/ml or below did not cause toxicity [138]. Cell viability with rabbit fibroblasts, as measured by the MTT assay was 82.3% of control (24 h exposure) [155]. The silver concentration for the antimicrobial effect was 7.5 μg/ml, considerably lower than the levels required for toxicity against C2C12 cells at >40 μg/ml, against BRL 3A rat liver cells >24 μg/ml and human fibroblast (IMR-90) and glioblastoma cells (U251) at >25 μg/ml [159]. The Ag⁺–Alloy exhibited no cytotoxicity towards L-929 fibroblasts by MTT assay [169].

The potential cytotoxicity of Ag⁺-EMT and AgNP-EMT nanosized zeolites on human glioblastoma, human embryonic kidney cells as well as astrocytes from fetal cortices of neonatal mice and cultures from mouse embryos were studied [208]. The dosages were 50, 100 and 400 μg/ml of zeolite for periods of 24 and 45 h. Cell viability was measured WST-1 assay, (similar to MTT assay). With the glioblastoma and kidney cells, 50 μg/ml of Ag⁺ EMT killed all the cells, (24 h), whereas with 400 μg/ml of AgNP EMT, a loss of 73.5 ± 20.51% was noted after 24 h relative to control. The kidney cells were more resistant to Ag⁺-EMT (83.64 ± 2.31% decrease relative to central at 50 μg/ml dosage for 24 h). With AgNP EMT at 400 μg/ml, after 24 h, a loss of 62.3 ± 17.96% in cell viability compared to control was noted. For neurons, both Ag⁺ EMT and AgNP EMT exhibited similar toxicity with no viable cells after 24 h at 50 μg/ml. AgNP EMT was more toxic to astrocytes as compared to Ag⁺ EMT for comparable dosages (with 50 μg/ml, loss in cell viability of 34.37 ± 23.90% and 97.95 ± 3.31% for Ag⁺ EMT and AgNP EMT, respectively). E. coli growth even at 50 μg/ml of Ag⁺ EMT was completely stopped, whereas with AgNP EMT, it required 400 μg/ml to stop all growth.

These studies with eukaryotic cells show that by proper control of the type and amount of silver zeolite, it is possible to exhibit antibacterial effect with minimal effect on eukaryotic cell viability.

6.3. Animal studies with silver colloids

There are studies on the adverse effect of silver nanoparticles on daphnia (planktonic crustaceans), Eurasian perch and zebrafish embryos [209–211].

The effect of silver nanoparticles on mice, rats, chickens and rabbits are reported.

Exposure of mice to silver nanoparticles (5 ± 2 nm) by inhalation caused pulmonary inflammation (inhalation doses of AgNP were 3–3 mg m⁻³, 4 h d⁻¹ for 10 days) [212]. Silver nanoparticles (18 nm) were found mainly in lungs and liver of rats, but no evidence of genotoxicity was noted [213]. Other studies with 18 nm silver particles in rats noted reduced lung volume, increased alveolar inflammation and silver accumulation in the bodies of rats [214,215]. Inhalation of AgNP by rats for 28-days did not cause health effects, though 90-day study showed accumulation in the lungs and liver. High doses of AgNP were required to cause any toxic response [216]. Inhalation of ~35 nm silver nanoparticles by rats did not cause any significant changes in the respiratory and circulatory systems, though accumulation of particles in the body was noted [217]. At high concentration, 100–1000 mg/kg AgNP, neurotoxicity was noted in mouse brain [218]. Damage was noted with doses above 300 mg of particles assessed over a period of 28 days [219]. Neurotoxicity and immunotoxicity was noted in mice that inhaled AgNP with dosage of 1.91 × 10⁷ particles/cm³ for 6 h d⁻¹ and 5 day⁻¹ [220].

Penetration and inflammatory properties of AgNP on porcine skin indicated that the toxic response were arising from the contaminants in the AgNP suspensions [221].

Broiler chickens fed a diet of ~18 nm silver particles (4 ppm) resulted in accumulation of particles in hepatocytes. With increased concentration (12 ppm) of particles, growth of fibrous tissue and necrosis of hepatocytes was noted [222].

With rabbits, 10 and 20 nm silver particles led to skin edema and erythema. Death of liver cells, spleen hyperaemia and cerebral edema was also noted. Nanoparticles were found to cause more adverse effects than large particles [223].

Animal studies have also shown positive effects of silver [12]. With laboratory mice, nanosilver particles effectively controlled platelet clumping and prevented platelet adhesion [224]. Liver damage of mice induced by CCl₄ was cured with AgNP [225]. Silver not only kills pathogens in wounds, but also stimulates tissue and bone regrow. AgNP is proposed to play a role in decreasing inflammation in chronic inflections and wounds [226]. A mouse model of allergic airway disease noted that AgNP attenuated antigen-induced airway inflammation and hyper-responsiveness [227].

There are a few studies with humans. Decades ago, Rendin et al. noted that colloidal silver oxide given via oral ingestion to 88 peptic ulcer patients for a period of 9 days healed 87 patients [228]. More recently, Munger et al. carried out a 14-day human oral
Table 1
Chronological summary of literature (since 2000).

<table>
<thead>
<tr>
<th>Reference</th>
<th>Zeolite used</th>
<th>Microorganism used</th>
<th>Conditions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kawahara 2000 [110]</td>
<td>Ag⁺ zeolite A (Zeomic), 2.5 wt% Ag</td>
<td>P. gingivalis, P. intermedia, A. actinomycetemcomitans, S. mutans (other dental bacteria also studied)</td>
<td>1 × 10⁷ cells/ml 24–72 h incubation</td>
<td>– 14 different bacterial strains (oral) were studied under anaerobic conditions
 – MIC of Ag⁺–A varied from 256 to 2048 µg/ml
 – Gram-negative species more susceptible
 – 75% of Ag⁺ was released into the broth within 30 min and unaltered at longer times</td>
</tr>
<tr>
<td>Padachey 2000 [170]</td>
<td>Zeomic (0.2 wt%) – glass composite</td>
<td>E. faecalis</td>
<td>10⁶–10⁷ CFU/ml</td>
<td>Zeolite–glass root canal sealer did not stop bacteria ingress</td>
</tr>
<tr>
<td>Inoue 2002 [140]</td>
<td>Ag⁺–zeolite X in polyvinylidene fluoride films PVF</td>
<td>E. coli</td>
<td>10⁶ CFU/ml 0.1 g PVF</td>
<td>No activity in N₂ saturated media
 – Over 5 min, complete cell death
 – OH radical, H₂O₂, O₂ relevant to bactericidal activity
 – Ag⁺ <10⁻⁷ M
 – Ag⁺ as antibacterial species
 – MBC to E. coli 3.13 mg/ml (78 µg Ag/ml), 1.56 mg/ml (39 µg/ml) to S. aureus
 – Zeolite on stainless steel exhibited >99.9% efficacy in 24 h
 – Antimicrobial efficacy maintained over repeated washing steps</td>
</tr>
<tr>
<td>Cowan 2003 [166]</td>
<td>Zn²⁺/Ag⁺ zeolite on stainless steel via epoxy binding</td>
<td>E. coli, S. aureus, P. aeruginosa</td>
<td>>1 × 10⁶ CFU/ml</td>
<td>Antibacterial activity towards P. aeruginosa not observed
 – Other microorganisms activated noted
 – P. aeruginosa formed biofilm
 – Zeolite incorporation during spinning at 256°C
 – Ag⁺ reduction to Ag⁰ during processing
 – Antimicrobial activity in buffer
 – Ag⁺ exhibits selectivity over Na⁺ for ion-exchange into clinoptilolite
 – Ag⁺–zeolite more antibacterial than Zn²⁺ or Cu²⁺–zeolite</td>
</tr>
<tr>
<td>Galeano 2003 [165]</td>
<td>Stainless steel coated with commercial Ag ion zeolite A</td>
<td>Vegetative cells and spores of B. anthracis Sterne, B. cereus, B. subtilis 168 E. coli</td>
<td>10⁶–10⁷ CEU/ml</td>
<td>Coating produced 3 log₁₀ decrease of vegetative cells
 – no effect on spores
 – Aerobic conditions promoted antimicrobial activity
 – Close proximity of bacteria and zeolite necessary for activity</td>
</tr>
<tr>
<td>Matsumura 2003 [111]</td>
<td>Ag⁺ zeolite A (Zeomic), 2.5 wt Ag</td>
<td>P. aeruginosa, E. coli</td>
<td>2 × 10⁹ CFU/ml/ml zeolite (concentration units inconsistent)</td>
<td>Zeolite coatings had excellent adhesion to stainless steel
 – Bactericidal action immediately upon contact with Ag⁺–zeolite/stainless steel coupon (5.5 log 10 decrease)
 – No surviving colonies after 24 h
 – Smaller zeolite particles had better bactericidal activity
 – MIC of spray 5–50 µg/cm²
 – Human patch test show no adverse effect
 – 150 µg/ml of Ag⁺–X killed all E. coli within 45 min and S. aureus and P. aeruginosa within 60 min
 – Dissolved Ag⁺ <10 ppm (45 min, 97% retained in zeolite)
 – Same sample repeatable activity (measured 3 times)</td>
</tr>
<tr>
<td>Abo El Ola 2004 [142]</td>
<td>Ag⁺–zeolite X in poly(trimethylethylene terephthalate films) 0.5 wt% zeolite 1–4 μm</td>
<td>E. coli</td>
<td>10⁶ CFU/ml Agar method</td>
<td>Zeolite incorporation during spinning at 256°C
 – Ag⁺ reduction to Ag⁰ during processing
 – Antimicrobial activity in buffer
 – Ag⁺ exhibits selectivity over Na⁺ for ion-exchange into clinoptilolite
 – Ag⁺–zeolite more antibacterial than Zn²⁺ or Cu²⁺–zeolite</td>
</tr>
<tr>
<td>Top 2004 [106]</td>
<td>Ag⁺–clinoptilite (natural zeolite)</td>
<td>P. aeruginosa, E. coli</td>
<td>Agar disk diffusion method</td>
<td>Zeolite on stainless steel exhibited >99.9% efficacy in 24 h
 – Antimicrobial efficacy maintained over repeated washing steps</td>
</tr>
<tr>
<td>McDonnell 2005 [167]</td>
<td>Ag⁺ zeolite A grown on stainless steel</td>
<td>E. coli</td>
<td>>1 × 10⁶ CFU/stainless steel</td>
<td>Zeolite coated stainless steel coupons (5.5 log 10 decrease)
 – No surviving colonies after 24 h
 – Smaller zeolite particles had better bactericidal activity
 – MIC of spray 5–50 µg/cm²
 – Human patch test show no adverse effect
 – 150 µg/ml of Ag⁺–X killed all E. coli within 45 min and S. aureus and P. aeruginosa within 60 min
 – Dissolved Ag⁺ <10 ppm (45 min, 97% retained in zeolite)
 – Same sample repeatable activity (measured 3 times)</td>
</tr>
<tr>
<td>Lim 2006 [160]</td>
<td>Ag⁺–Y zeolite on cellulose fibers</td>
<td>Staphylococcus ATCC 6538</td>
<td>Deodorization towards NH₃</td>
<td>Zeolite incorporated into polyurethane
 – Smaller zeolite particles had better bactericidal activity
 – MIC of spray 5–50 µg/cm²
 – Human patch test show no adverse effect
 – 150 µg/ml of Ag⁺–X killed all E. coli within 45 min and S. aureus and P. aeruginosa within 60 min
 – Dissolved Ag⁺ <10 ppm (45 min, 97% retained in zeolite)
 – Same sample repeatable activity (measured 3 times)</td>
</tr>
<tr>
<td>Nakane 2006 [176]</td>
<td>Zeomic dispersed in oil and propellant as an odor spray</td>
<td>Several bacterial strains isolated from skin</td>
<td>10⁵–10⁶ CFU/ml 0–40 wt% zeolite</td>
<td>Zeolite incorporated into polyurethane
 – Smaller zeolite particles had better bactericidal activity
 – MIC of spray 5–50 µg/cm²
 – Human patch test show no adverse effect
 – 150 µg/ml of Ag⁺–X killed all E. coli within 45 min and S. aureus and P. aeruginosa within 60 min
 – Dissolved Ag⁺ <10 ppm (45 min, 97% retained in zeolite)
 – Same sample repeatable activity (measured 3 times)</td>
</tr>
<tr>
<td>Kwiatek-Awuah 2007 [118]</td>
<td>Ag⁺–zeolite X, 5.8 wt% Ag, 2–9 μm zeolite</td>
<td>E. coli, P. aeruginosa, S. aureus</td>
<td>5 × 10⁵ CFU/ml</td>
<td>Zeolite incorporated into polyurethane
 – Smaller zeolite particles had better bactericidal activity
 – MIC of spray 5–50 µg/cm²
 – Human patch test show no adverse effect
 – 150 µg/ml of Ag⁺–X killed all E. coli within 45 min and S. aureus and P. aeruginosa within 60 min
 – Dissolved Ag⁺ <10 ppm (45 min, 97% retained in zeolite)
 – Same sample repeatable activity (measured 3 times)</td>
</tr>
<tr>
<td>Kamisoglu 2008 [143]</td>
<td>Ag⁺–zeolite beta (Si/Al = 9.4, 5.53 wt % Ag), Ag⁺–zeolite A (Si/Al = 1.2, 10.6 wt% Ag) incorporated into polyurethane</td>
<td>E. coli</td>
<td>Disc diffusion method</td>
<td>– Both samples exhibited antibacterial activity
 – Mechanical properties improved with zeolite incorporation
 – Light irradiation in the presence of Ag⁺–zeolite exhibit 6 log₁₀ decrease in 5 min
 – Antimicrobial activity increased with zeolite loading
 – Flexural and impact strength decreased with zeolite incorporation
 – Cumulative leaching of Ca²⁺, Si⁴⁺ reduced in zeolite coated concrete (28 days)
 – pH profile indicated antimicrobial activity
 – 75% reduction in bacterial/mold load with Ag-duct</td>
</tr>
<tr>
<td>Inoue 2008 [119]</td>
<td>Ag⁺–faujasite</td>
<td>E. coli</td>
<td>10⁶ CFU/ml</td>
<td>Light irradiation in the presence of Ag⁺–zeolite exhibit 6 log₁₀ decrease in 5 min
 – Antimicrobial activity increased with zeolite loading
 – Flexural and impact strength decreased with zeolite incorporation
 – Cumulative leaching of Ca²⁺, Si⁴⁺ reduced in zeolite coated concrete (28 days)
 – pH profile indicated antimicrobial activity
 – 75% reduction in bacterial/mold load with Ag-duct</td>
</tr>
<tr>
<td>Casemiro 2008 [172]</td>
<td>Commercial Ag⁺–zeolite in acrylic resin for dentures (2.5–5 wt% zeolite)</td>
<td>C. albicans, S. mutans</td>
<td>Agar diffusion method</td>
<td>– Both samples exhibited antibacterial activity
 – Mechanical properties improved with zeolite incorporation
 – Light irradiation in the presence of Ag⁺–zeolite exhibit 6 log₁₀ decrease in 5 min
 – Antimicrobial activity increased with zeolite loading
 – Flexural and impact strength decreased with zeolite incorporation
 – Cumulative leaching of Ca²⁺, Si⁴⁺ reduced in zeolite coated concrete (28 days)
 – pH profile indicated antimicrobial activity
 – 75% reduction in bacterial/mold load with Ag-duct</td>
</tr>
<tr>
<td>Haile 2008 [180]</td>
<td>Agion with Ca²⁺, Zn²⁺ on mortar specimens</td>
<td>A. thiooxidans</td>
<td>Ca²⁺, Si⁴⁺ leaching pH monitoring</td>
<td>5 month study
 – Bacterial count in air</td>
</tr>
<tr>
<td>Rizzetto 2008 [177]</td>
<td>Commercial Agion coated on HVAC ducts</td>
<td>S. aureus, L. pneumophila, P. aeruginosa, C. albicans, A. niger, E. coli</td>
<td>5 month study
 – Bacterial count in air</td>
<td>(continued on next page)</td>
</tr>
</tbody>
</table>
Table 1 (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Zeolite used</th>
<th>Microorganism used</th>
<th>Conditions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhang 2009</td>
<td>Ag⁺-zeolite A prepared by ion-exchange with microwave</td>
<td>E. coli, B. subtilis, S. aureus</td>
<td>10⁶ cells/ml</td>
<td>– MIC of microwave Ag⁺-A was 50 μg/ml for all three bacteria as compared to 100 μg/ml for conventional ion-exchange</td>
</tr>
<tr>
<td>Lind 2009</td>
<td>Ag⁺-nanozeolite A (140 nm) incorporated in polyamide film</td>
<td>P. putida</td>
<td>10⁶–10⁷ cells/ml</td>
<td>– Ag⁺-zeolite powders exhibited activity (measured by fluorescence)</td>
</tr>
<tr>
<td>Lv 2009</td>
<td>Ag⁺ ETS-10 (6.4–17.8 wt%) AgNP ETS-10 (5.3–16.2 wt%) (NaBH₄ reducing agent)</td>
<td>E. coli</td>
<td>10⁷ CFU/ml 500 μg zeolite/ml</td>
<td>– Ag⁺ release higher with Ag⁺ ETS-10 over AgNP-10 (1 h)</td>
</tr>
<tr>
<td>Haile 2010</td>
<td>Ag⁺ bound to concrete by epoxy</td>
<td>A. thiosidans</td>
<td>Biomass weight</td>
<td>– Zeolite coating improves bacterial induced corrosion</td>
</tr>
<tr>
<td>Sabbani 2010</td>
<td>AgNP-lithographically patterned zeolite Y membrane (N₂H₄ reducing agent)</td>
<td>E. coli</td>
<td>5 × 10⁶ CFU/ml</td>
<td>– Zeolite inhibitory to biofilm formation</td>
</tr>
<tr>
<td>Fernandez 2010</td>
<td>Ag⁺-zeolite A incorporated in polyacrylic acid</td>
<td>E. coli, S. aureus</td>
<td>10⁶ CFU/ml</td>
<td>– Leaching reduced with zeolite coating</td>
</tr>
<tr>
<td>Kaali 2010</td>
<td>Zeomic in polyurethane and silicone rubber (1–5 wt% zeolite)</td>
<td>MRSA, P. aeruginosa, Several fungi</td>
<td>8 × 10⁶ CFU/ml</td>
<td>– Ag⁺-zeolite most antimicrobial</td>
</tr>
<tr>
<td>Xu 2010</td>
<td>Ag⁺, Zn²⁺ zeolite in polyethylene via melt extrusion</td>
<td>S. aureus, Colibacillus</td>
<td>2 × 10⁵ CFU/ml</td>
<td>– Ag⁺-zeolite most antimicrobial</td>
</tr>
<tr>
<td>Hoek 2011</td>
<td>Ag⁺-zeolite in polysulfone ultrafiltration membranes (250 nm, 1.5–6.5 μm zeolites)</td>
<td>P. putida</td>
<td>10⁶ CFU/ml</td>
<td>– Ag⁺-zeolite most antimicrobial</td>
</tr>
<tr>
<td>Kaali 2011</td>
<td>Zeomic (Ag⁺, Zn²⁺, Cu²⁺) in polyurethane</td>
<td>MRSA, P. aeruginosa, C. tropicalis</td>
<td>10⁷ CFU/ml 24 h</td>
<td>– Ag⁺-zeolite most antimicrobial</td>
</tr>
<tr>
<td>Lalueza 2011</td>
<td>Ag⁺ZSM-5 (0.16–0.23 wt% Ag)</td>
<td>S. aureus</td>
<td>10⁶ CFU/ml, 30 mg/ml (0.23 wt% zeolite)</td>
<td>– Ag⁺-zeolite most antimicrobial</td>
</tr>
<tr>
<td>Lee 2011</td>
<td>Agion in tissue paper</td>
<td>P. putida</td>
<td>Bacterial growth inhibition</td>
<td>– No correlation between Ag⁺ release and bacterial activity at long times</td>
</tr>
<tr>
<td>Nagy 2011</td>
<td>AgNP-zeolite Y membrane</td>
<td>E. coli, S. aureus (MRSA)</td>
<td>10⁶ CFU/ml</td>
<td>– E. coli decreased by 6 log₁₀ in 180 min</td>
</tr>
<tr>
<td>Odabas 2011</td>
<td>Ag⁺-zeolite A (0.2–2 wt%) in mineral trioxide aggregate, a dental cement</td>
<td>S. Aureus, E. faecalis, E. coli, P. aeruginosa, C. albicans, P. gingivalis, A. israeli</td>
<td>Agar Diffusion method</td>
<td>– No antimicrobial activity towards P. intermedi A. israeli</td>
</tr>
<tr>
<td>Wang 2011</td>
<td>Ag⁺-zeolite A on titanium alloys 2.3 wt% Ag</td>
<td>S. aureus (MRSA)</td>
<td>10⁶ cells/ml</td>
<td>– Activity towards other listed microorganisms</td>
</tr>
<tr>
<td>Shameli 2011</td>
<td>AgNP/zeolite Y (AgNP 2–3 nm) (NaBH₄ reductant) 2–3 μm AgION commercial Ag⁺-zeolite (Ag⁺ 10.4 wt%) incorporated into PVC by melt mixing (2–20 wt% zeolite)</td>
<td>E. coli, S. dysenteriae, S. aureus, S. aureus (MRSA)</td>
<td>Disc diffusion method 10⁵–10⁷ CFU/ml</td>
<td>– All AgNP-Y exhibited antimicrobial activity towards all 4 bacteria</td>
</tr>
<tr>
<td>Zampino 2011</td>
<td>Ag⁺-zeolite A prepared by ion-exchange with microwave</td>
<td>E. coli, S. epidermis</td>
<td>10⁶–10⁷ CFU/ml</td>
<td>– 20 wt% Ag⁺ zeolite in PVC 4–6 log₁₀ decrease in 24 h</td>
</tr>
</tbody>
</table>

Notes:
- **Zeolite**: Ag⁺-zeolite (Ag⁺-A) is a commonly used material for various applications due to its antimicrobial properties.
- **Microorganism used** include E. coli, B. subtilis, S. aureus, and P. putida, with varying conditions and comments on the effectiveness of the treatment.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Zeolite used</th>
<th>Microorganism used</th>
<th>Conditions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saint-Cricq 2012 [137]</td>
<td>Ag⁺ Zeomic (commercial)</td>
<td>E. coli</td>
<td>10⁶ CFU/ml</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ag⁺-Beta</td>
<td></td>
<td>2 mg zeolite/ml</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ag⁺-MTW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedi 2012 [168]</td>
<td>Ag⁺-zeolite Y in stainless steel (38–40% Ag)</td>
<td>E. coli, L. innocua, S. epidermidis, P. putida, A. pullulans, R. mucilaginosa</td>
<td>10⁵–10⁷ CFU/ml</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boschetto 2012 [148]</td>
<td>Ag⁺-zeolite Y in polyethylene (1–10 wt% zeolite, 5 wt% Ag)</td>
<td>E. coli</td>
<td>Optical density</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Agar diffusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lalueza 2012 [134]</td>
<td>Peracetic acid (PAA) (8–9%) in Ag⁺</td>
<td>S. aureus 9213</td>
<td>10⁴ CFU/ml</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 mg zeolite/ml</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krishnani 2012 [113]</td>
<td>Ag⁺-zeolite A (2–3 μm, 39.4 wt% Ag)</td>
<td>E. coli, V. harveyi, V. cholera, V. paraeaeolyticus</td>
<td>10⁵ CFU/ml</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5–60 μg/ml of zeolite</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferreira 2016 [125]</td>
<td>Ag⁺-zeolite X (0.5–3.3 μm)</td>
<td>Bacteria: E. coli, B. subtilis,Yeast: S. cerevisiae, C. Albicans</td>
<td>10 μg–1000 μg/ml</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ag⁺-zeolite Y (0.5–1.1 μm)</td>
<td></td>
<td>Ag⁺ zeolite/ml</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9.8 wt% Ag)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(NP size 2–20 nm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guerra 2012 [108]</td>
<td>AgNP-clinoptilite</td>
<td>E. coli, Salmonella typhi</td>
<td>150 CFU/ml</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ag NP 0.9–7.4 nm, Ag 4 wt%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inoue 2012 [122]</td>
<td>Ag⁺-zeolite Y</td>
<td>E. coli</td>
<td>10⁴–10⁵ CFU/ml</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flores-Lopez 2012</td>
<td>AgNP-chabazite (natural)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermal annealing in air to generate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ag NP (18.57 wt%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(NP size 2–20 nm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moretro 2012 [184]</td>
<td>Cutting boards containing Ag⁺-zeolite</td>
<td>S. aureus</td>
<td>>10⁴ CFU/ml</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tinteri 2012 [178]</td>
<td>Ag zeolite on HVAC duct panels</td>
<td>L. pneumophilia, S. aureus, P. aeruginosa, E. coli, C. albicans, A. niger</td>
<td>Analyzing microbial activity of panel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 year test 10²–10⁵ CFU/ml</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaali 2013 [114]</td>
<td>Single, binary and ternary mixtures of Ag⁺, Cu⁺⁺, Zn⁺⁺-exchanged zeolite A</td>
<td>S. aureus (MRSA), P. aeruginosa, C. tropicalis</td>
<td>5 × 10⁴ CFU/ml</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2–1024 μg/g of zeolite</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jai-eau 2013 [158]</td>
<td>Ag⁺-exchanged zeolite in vulcanized rubber</td>
<td>E. coli, S. aureus</td>
<td>1–5 wt% zeolite in rubber</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jiraoj 2014 [116]</td>
<td>Ag⁺-zeolite A</td>
<td>E. coli, S. aureus</td>
<td>10⁵ CFU/ml</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AgNP-zeolite A (NaBH₄ reduction), Ag NP <10 nm</td>
<td></td>
<td>25–200 μg/ml zeolite, duration 0–3 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cushen 2014 [149]</td>
<td>Commercial Agion (0.5–2 wt% zeolite) in polyethylene 3 μm zeolite</td>
<td>Studied the release of Ag⁺ in fluids</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5 × 10⁻⁴ mg/kg, 0.001 mg/kg regulatory limit</td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
Table 1 (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Zeolite used</th>
<th>Microorganism used</th>
<th>Conditions</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Kim 2014 [152] | 5–10 nm AgNP on 50 nm zeolite in polystyrene | S. aureus, K. pneumoniae | | – Zeolite incorporation/polymer by UV radiation
| | alcohol hydrogels (1, 3, 5 wt% zeolite) | | | – 99.9% reduction in S. aureus with 3 wt% zeolite/polymer sample
| | | | | – MIC of 1 µg/ml Ag⁺-A towards E. coli and 3.5 µg/ml towards S. aureus (poor data presentation makes it difficult to compare with other studies)
| Zhou 2014 [115] | Ag⁺-zeolite A (36 wt% Ag) | E. coli | Not provided | – MIC of 32–64 µg/ml towards E. coli, S. aureus
| | | S. aureus | | – Activity correlates with rate of ion release
| Demirci 2014 [117] | Ag⁺-zeolite A and X | E. coli, P. aeruginosa, B. cereus, S. | – 10⁷ CFU/ml | – Bacterial counts lower on silver zeolite coated door handles most of the time (there were exceptions)
| | | aureus | – 24 h exposure | |
| Saravanan 2015 | Ag⁺-zeolite incorporated in cellulose | | | |
| Rieger 2016 [161] | Zeolite A grown on cellulose | E. coli | | – Optimum MIC value for E. coli and S. aureus was 50 µg/ml
| | Nano and meso zeolite A incorporated in cellulose| | | – Growth of microalgae inhibited
| | | E. coli | | – 10 wt% Ag loaded sample reduced biofilm attachment by 81%
| Rieger 2016 [161] | Zeolite A grown on cellulose | E. coli | | – 10⁷ cells/ml
| | Nano and meso zeolite A incorporated in cellulose| | | – Ag⁺-A in suspension killed 53% of bacteria (30 min)
| | | E. coli | 4 mg Ag⁺-zeolite A suspension, 0.07–0.35 mg Ag⁺-zeolite A/cellulose mat | – Ag⁺-zeolite incorporated in cellulose more active (70–90% kill in 30 min)
| | | E. coli | | – Ag⁺-zeolite in cellulose releases lower levels of Ag⁺, as compared to crystals
| | | E. coli | | – Cellulose porous matrix provides better contact with bacteria
| | | | | – 70–90% cells killed within 90 min with Ag⁺-zeolite/cellulose samples
| | | | | – Microstructure of cellulose promotes contact with bacteria

(continued)
exposure to a commercial colloidal silver product and no significant changes were noted in pulmonary ROS or pro-inflammatory cytokine generation [229]. No morphological changes were noted in the lungs, heart or abdominal organs. Baral et al. noted that colloidal silver alleviated the inflammatory symptoms in cystic fibrosis [230].

Human patch tests and a 4-week safety test of the powder zeolite spray showed no adverse events [176].

6.4. Regulatory issues

Many of the world’s regulatory agencies have put a limit on the exposure to silver [7, 231]. World Health Organization (WHO) in 2004 proposed a No observable Adverse Effect Level (NOAEL) for humans of 0.39 mg/person/day (corresponds to 6.5 µg/kgbw/day, assuming an adult weighs 60 kgbw). These values led WHO to conclude that silver levels of 0.1 mg/l is tolerable in drinking water. EFSA (European Food Safety Agency) recommends 0.05 mg/l in water and 0.05 mg/kg in food. US EPA recommends 0.1 mg/l (100 ppb) in drinking water [232]. The basis for these recommendations is that LOAEL (Lowest Observable Adverse Effect Level) silver causes argyria in humans following intravenous application. Considering oral absorption of 4%, body weight of 70 kg and lifetime of 70 years, US EPA has come up with a dose of 5 µg/kgbw for chronic exposure to silver.

A tolerable daily intake (TDI) of 2.5 µg/kgbw/day is proposed for all for oral exposure to ~22 nm silver nanoparticles based on elevation of TNF-α in serum of mice exposed to these particles [233]. For silver zinc zeolites, the acceptable daily intake (ADI) of 0.3 µg/kgbw/day has been proposed, based on a 2 year study in rats focused on liver toxicity, organ pigmentation and endometrial polyps [231].

The regulations relating to silver in contact with food materials varies widely between different countries [234]. In 2014, USEPA warned a company to stop selling a silver-containing food container since the claim that the container keeps food fresh was not approved by the EPA. In 2013, the Brazilian authorities rejected a bill that proposed labeling products that use nanotechnology.

Table 1 (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Zeolite used</th>
<th>Microorganism used</th>
<th>Conditions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shankar 2016</td>
<td>Ag⁺-zeolite in alginate films</td>
<td>E. coli, L. monocytogenes</td>
<td>10⁵–10⁷ UFI/ml</td>
<td>MIC/MBC of Ag⁺-zeolite alginate film 3.125/12.5 µg/ml for L. monocytogenes</td>
</tr>
<tr>
<td>Jaime-Acuna 2016</td>
<td>AgNP-mordenite synthesized in a one-pot process. Zeolite 40 µm AgNP 5–6 nm</td>
<td>E. coli</td>
<td>MIC determined with 10⁷ CFU/ml</td>
<td>AgNP mordenite exhibited a MIC and MBC of 2 and 3 µg/ml, respectively</td>
</tr>
<tr>
<td>Ferreira 2016</td>
<td>Zn²⁺ + Ag⁺ exchanged zeolite Y</td>
<td>E. coli, B. subtilis, C. albicans, S. cerevisiae</td>
<td>CFU for MIC not specified</td>
<td>Direct contact of zeolite and bacteria promoted activity</td>
</tr>
<tr>
<td>Chen 2017</td>
<td>Ag⁺-zeolite X of varying morphology (100–700 nm, 2 µm)</td>
<td>MRSAs, human epithelial cells, skin fibroblasts, monocytes</td>
<td>10⁷–10⁹ CFU/ml</td>
<td>For the optimal ZnAgY, MIC values for bacteria were 100 µg/ml, and 300 µg/ml for the yeast</td>
</tr>
<tr>
<td>Ghivari 2017</td>
<td>Silver zeolite (not specified) applied to biofilms (root canal irrigant)</td>
<td>Biofilm of C. albicans, S. aureus, C. albicans</td>
<td>Biofilm on nitrocellulose membrane</td>
<td>Zeolite not as effective as NaOCl, chlorhexidine iodocaine</td>
</tr>
<tr>
<td>Jedrzejczyk 2017</td>
<td>Ag zeolite Y incorporated in paper</td>
<td>E. coli, A. niger, S. Marcescens, B. subtilis, B. megaterium, M. alpina, T. viride, C. globosum, C. cladosporioides</td>
<td>Lucipac Pentest (measures ATP)</td>
<td>AgNP and Ag⁺-zeolite Y in paper show similar antimicrobial and antifungal activity</td>
</tr>
<tr>
<td>Sanchez 2017</td>
<td>Ag⁺-ZSM-5</td>
<td>E. coli, P. aeruginosa, C. albicans</td>
<td>Agar diffusion method, bacterial growth curves</td>
<td>Antibacterial and antifungal effect noted</td>
</tr>
<tr>
<td>Scacchetti 2017</td>
<td>Ag⁺-zeolite A, Ag⁺-zeolite A/chitosan in cotton fabric</td>
<td>E. coli, S. aureus, S. Albicans, T. rubrum</td>
<td>10⁷–10⁹ CFU/ml</td>
<td>Growth of bacteria retarded by 50% in 3 h</td>
</tr>
<tr>
<td>Tosheva 2017</td>
<td>Small (180–230 nm and large (1.2–2.2 µm) zeolite X Ag ~10.7 wt%</td>
<td>E. coli, C. albicans</td>
<td>10⁷ CFU/ml, 7 min assay (500 µg/ml)</td>
<td>Large crystals were more effective than smaller crystals (e.g. small zeolite X decreases 5 log 10 in 5 min, large zeolite X 5 log 10 reduction in 5 min</td>
</tr>
<tr>
<td>Wu 2017</td>
<td>Surface modified nanozeolite Y (150 nm) incorporated into polyvinyl alcohol and polydopamine</td>
<td>P. aeruginosa</td>
<td>10⁶ CFU/ml</td>
<td>AgNP – PVA and PBA coating showed significant antimicrobial activity e.g. bacterial growth inhibited for 9 days on membrane surface</td>
</tr>
<tr>
<td>Youssef 2017</td>
<td>Ag – analcime, faujasite, zeolite A 200 nm and micron zeolite 50 wt% Ag</td>
<td>S. aureus, P. aeruginosa, C. albicans, A. niger</td>
<td>Agar diffusion method</td>
<td>Antimicrobial activity analcime > faujasite > zeolite A</td>
</tr>
<tr>
<td>Hamiciuc 2018</td>
<td>Silylated zeolite L (200 nm) in polylether-ether-ketone (2, 7, 12 wt % zeolite)</td>
<td>S. aureus, MRSA, E. coli</td>
<td>Agar diffusion</td>
<td>No major difference between nano and micron size in activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Upon 24 exposure fibroblast viability decreased to 82% of control</td>
</tr>
</tbody>
</table>
7. Assessment of the literature

It is difficult to compare the antimicrobial performance of the silver zeolites from different authors, even for the same zeolite. The broth media, number of viable cells and amounts of zeolite and the silver content used vary widely. Thus, it is not surprising that MIC values as reported in Table 1 vary significantly. However, comparisons can be drawn from a single study or if experimental conditions are well defined.

Conclusions related to the structure of zeolites that can be made are

- Different zeolite frameworks exhibit different activity, even for comparable silver loading. This could arise from differences in the Ag\(^+\) release characteristics due to the varying framework – Ag\(^+\) electrostatic interactions.
- For the same framework, higher Ag\(^+\) loading leads to increased antimicrobial activity, unless at higher loading metallic Ag is formed.
- Surface charge modification of the zeolite particle to a positive charge improves antimicrobial effect. The possible explanation is that the positively charged zeolite is attracted to the negatively charged bacterial surface. However, the charge that the particle acquires in the broth is dependent on adsorption of salts/proteins (protein corona) and can be different from the magnitude and sign of the charge on the as-synthesized particle.
- Co-cations such as Zn\(^{2+}\) and Cu\(^{2+}\) increases antimicrobial activity, though the exact synergy is difficult to evaluate because introducing a second cation alters the amount and release characteristics of the Ag\(^+\). The order in which the ions are exchanged also becomes relevant because different sites have different energetics which influences the release of the ions.
- For the same framework, AgNP supported zeolite exhibits higher activity than Ag\(^+\)/Zeolite, though there are inconsistencies in the literature of this issue.
- AgNP supported on nanozeolite had a slightly higher activity.
- In a direct comparison, high Si/Al ratio zeolite beta was comparable in performance to zeolite A, though the latter had five times the amount of silver.
- Large zeolite particles were more active than smaller ones for the same framework, though results on this point are inconsistent.
- More siliceous zeolites tend to be more potent, if silver levels are comparable to more aluminous zeolites.

From a practical point of view, the following conclusion can be drawn

- Common methods of polymer fabrication can incorporate silver zeolites.
- Silver zeolites can be applied as coatings on metal, textiles and polymers.
- Zeolite membranes containing silver can be synthesized on polymers, metals.
- Zeolites in some cases can compromise the mechanical properties of polymers.
- Manufacturing processes that incorporate silver zeolites need to be optimized so that the zeolites are accessible to the external environment.
- Long term use of silver zeolites on variety of matrices is possible because of the storage of large amounts of silver with slow release.
- Humid conditions are required for antimicrobial activity.
- Uniform distribution of silver zeolites in matrices depends on formulation methodology, and needs to be optimized.

8. Future trends

The numerous studies discussed above clearly demonstrates that silver zeolite function as antimicrobial agents, as well as show potent activity against fungi, yeasts and viruses. Thus, silver zeolites are an alternative to silver salts and silver colloids. Silver zeolites are capable of storage and release of Ag\(^+\) and AgNP. There are growing concerns about the use of silver colloids, because of their eventual release into the environment, soils and possibly even into drinking water and foods for living species. Regulations are being proposed for controlling the release and amounts of silver. Silver zeolites will possibly subject to similar regulations as silver colloids. Other concern is that microbes may develop resistance to silver. Paracelsus the founder of toxicology stated that “dosage makes a material a poison or a remedy (dosis sola facit venenum)" applies to silver-based compounds [12]. So, the ideal goal should be to use the least amount of silver, while exploiting its antimicrobial properties. Do silver zeolites offer any advantages over silver salts and silver colloids? The answer to this question is application specific. Future trends on the use of silver zeolites will depend on a better understanding of its mechanism of action and the advantages that the zeolite host provides in enhancing the antimicrobial properties of the guest silver species.

From a basic research viewpoint, the dynamics of release of Ag\(^+\) from Ag\(^+\)-zeolite as well as AgNP- zeolite needs to be better understood as a function of

- Zeolite framework
- Zeolite Si/Al ratio
- Silver loading
- Presence of co-cations

These experiments should be done in a solution of fixed ion strength (e.g. 0.1 M NaNO\(_3\)).

Another area of research is the zeolite-cell interaction. The parameters here are

- Gram positive and negative bacteria.
- Zeolite morphology, spheres, cubes and needles.
- Zeolite size, nano versus micron.

Of interest are if nanosized zeolites can be engulfed by the bacteria. Microscopy, both optical and electron can help in evaluating the zeolite-bacteria interaction.

In a practical sense, it is possible that silver zeolites can be more effective than silver salts or silver colloids for the following reasons. Control of Ag\(^+\) release from silver zeolites is different from silver salts since it is controlled by the ion-exchange process. In the case of silver colloids, there are ligands on the surface, whereas AgNP on zeolite requires no ligand, thus altering Ag\(^+\) release. Zeolite cages and cavities can also store species, such as Zn\(^{2+}\) that can enhance the antimicrobial activity of silver. Zeolite surfaces contain –OH groups that can be modified to alter surface charge, and promote electrostatic interactions with the bacteria, thereby increasing potency. Nanozeolites can act as a Trojan horse delivering their content within the bacteria. Numerous possibilities exist for formulation of the optimized silver zeolite into products, including high temperature and harsh environment processing.

These features suggest that the zeolite as a support is unique and can increase the potency of the guest silver species, thereby requiring less silver, alleviating the environment concerns. The fate of silver zeolites in the environment will depend on the conditions. Zeolites are stable at pH’s between 3 and 12, and under these conditions, the silver will be retained on the zeolite and release by ion-exchange mechanisms and AgNP dissolution.
Silver-zeolite antimicrobials, optimized by size, surface charge, co-species can be an alternative to silver salts and silver colloids with higher potency and lower environmental footprint.

References

[14] K. Mijnendonckx, N. Leys, J. Mahillon, S. Silver, R.V. Houdt, Antimicrobial silver-zeolite antimicrobials, optimized by size, surface charge, co-species can be an alternative to silver salts and silver colloids with higher potency and lower environmental footprint. 25

M.L. Lind, B.-H. Jeong, A. Subramani, X. Huang, E.M.V. Hoek, Effect of mobile 146

S. Belkhair, M. Kinninmonth, L. Fisher, B. Gasharova, C.M. Liauw, J. Verran, B. 160

H.M. Lim, J.S. Jung, B.Y. Kim, S.H. Lee, Application of zeolites on cellulose fiber, 162

F.A.P. Scacchetti, E. Pinto, G.M.B. Soares, Thermal and antimicrobial 158

K. Jai-eau, E. Wimolmala, N. Sombatsompop, Cure behavior and antimicrobial 163

A.M.P. McDonnell, D. Beving, A. Wang, W. Chen, Y. Yan, Hydrophilic and 167

B. Galeano, E. Korff, W.L. Nicholson, Inactivation of vegetative cells, but not 165

L. Geranio, M. Heuberger, B. Nowack, The behavior of silver nanotextiles 171

C. Gunawan, C.P. Marquis, R. Amal, G.A. Sotiriou, S.A. Rice, E.J. Harry, Widespread and indiscriminate nanosilver use: genuine potential for

